
z/OS

Text Search:
Programming the Text Search Engine
Version 1.2

SH12-6717-01

���

z/OS

Text Search:
Programming the Text Search Engine
Version 1.2

SH12-6717-01

���

Note!

Before using this information and the product it supports, be sure to read the general information under “Appendix C.
Notices” on page 219.

Second Edition, October 2001

This edition applies to Version 1.2 of z/OS (Program Number 5694-A01) and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1993, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this book . vii
Who should read this book . vii
The Text Search Library. vii

Chapter 1. Before you start . 1
Overview of the interfaces . 1

The Text Search Engine application programming interface 1
The Text Search Engine library service interfaces 1
The Text Search Engine text format. 1

Data exchange conventions . 1
Basics about the data streams 2
Passing numerical values . 3
Passing character data . 3

Chapter 2. Linguistic processing 5
Linguistic processing for indexing 5

Basic text analysis . 6
Reducing terms to their base form 7
Stop-word filtering . 7
Decomposition (splitting compound terms) 7

Linguistic processing for retrieval. 8
Synonyms . 8
Thesaurus expansion . 9
Sound expansion . 9
Character and word masking 9

The supported languages . 9
Thesaurus concepts . 10

Terms . 11
Relations . 11
Ngram thesaurus relations. 13
Creating a Text Search Engine thesaurus 13
Creating an Ngram thesaurus 16

Chapter 3. Using the API functions. 21
Listing the servers and starting a session 21
Creating and setting up an index 21

Creating and deleting an index 22
Getting the names of the existing indexes 22
Suspending and resuming an index 23
Opening an index . 23
Getting index information . 23
Setting and getting the default indexing rules 23

Working with an index . 24
Scheduling and indexing documents 24
Getting the index status . 25
Improving performance and the use of storage 25
Setting and getting the index function status 26

Searching for documents . 26
The search functions. 26
Specifying the scope of a cross-index search. 27

Working with the result of a search 28
Finding matches in search results 28
Getting problem information for a cross-index search 29

© Copyright IBM Corp. 1993, 2001 iii

Working with result views . 29
Creating and ranking a result view. 29
Selecting from and sorting a result view. 30
Getting the contents of a result view 31

Working with structured documents 31

Chapter 4. Setting up your application 33
What the API provides . 33

Environment and system overview. 33
Setting up your application . 34

Defining symbolic names . 34
Linking your application. 34

Some programming hints . 35

Chapter 5. Calling the API functions 37
EhwAddQueryScope . 38
EhwCancelContinuation . 41
EhwClearIndex . 43
EhwClearScheduledDocuments 45
EhwCloseDocument . 47
EhwCloseIndex. 48
EhwCreateDocumentModel . 49
EhwCreateIndex . 52
EhwCreateIndexGroup . 58
EhwCreateResultView . 60
EhwDeleteDocumentModel . 62
EhwDeleteIndex . 64
EhwDeleteIndexGroup . 66
EhwDeleteResult . 67
EhwDeleteResultView . 69
EhwDelIndexingMsgs . 70
EhwEndSession . 71
EhwGetDocumentModel . 72
EhwGetIndexFunctionStatus . 75
EhwGetIndexInfo . 78
EhwGetIndexingMsgs . 81
EhwGetIndexingRules . 84
EhwGetIndexStatus . 87
EhwGetMatches . 90
EhwGetProblemInfo . 94
EhwGetResultView . 96
EhwListDocumentModels . 99
EhwListIndexes . 102
EhwListResult . 104
EhwListServers . 107
EhwOpenDocument. 110
EhwOpenIndex . 113
EhwRank . 115
EhwReorgIndex . 118
EhwResumeIndex . 120
EhwScheduleDocument . 122
EhwSearch . 125
EhwSelectResultView . 139
EhwSetIndexFunctionStatus 142
EhwSetIndexingRules . 144
EhwSort . 147

iv Text Search: Programming the Text Search Engine

EhwStartSession. 150
EhwSuspendIndex . 154
EhwUpdateIndex. 156

Chapter 6. Connecting Text Search Engine to a library 159
What library services provide 159
Functions . 160
Setting up the library connection 160

Chapter 7. Specifications for library services 163
LIB_access_doc . 164
LIB_close_doc . 166
LIB_doc_index_status . 167
LIB_end . 169
LIB_get_doc_attr_values . 170
LIB_get_doc_group_attr_values 173
LIB_init . 176
LIB_list_doc_groups . 178
LIB_list_documents . 181
LIB_read_doc_content. 184
Error handling concept and return codes 185

Chapter 8. Using the Text Search Engine text format 187
Data stream syntax . 187

Appendix A. The API return codes 191
API error handling . 191
Types of return codes . 191

Appendix B. Error codes returned by GetIndexingMsgs and
GetIndexFunctionStatus 207

Appendix C. Notices . 219
Programming interface information 220
Trademarks. 220

Index . 221

Contents v

vi Text Search: Programming the Text Search Engine

About this book

This book describes the following interfaces:

v The Text Search Engine application programming interface (API)

v The Text Search Engine library service interfaces

v The Text Search Engine text format

It explains how these interfaces can be used to:

v Obtain Text Search Engine services from customer applications

v Provide library services (document access) to Text Search Engine

v Support additional text formats in Text Search Engine and exploit Text Search
Engine support for multilingual documents

Who should read this book
This book contains information for application programmers who want to integrate
Text Search Engine functions with customer applications, document repositories
(libraries), or multimedia display services. It is written for application programmers
who want to develop an application that can use the services of the Text Search
Engine functions, or who want to develop programs that enable Text Search Engine
to interface with a given document repository. All programming interfaces provided
by Text Search Engine are for use with the C programming language. The Text
Search Engine text format is a data interchange format, not a programming
interface.

Before using the interface descriptions in this book, you should read “Chapter 1.
Before you start” on page 1. It provides an overview of the Text Search Engine
interfaces, defines most of the interface concepts and terminology, and explains the
notation conventions used in this book.

The Text Search Library
The following books are available for z/OS Text Search:

v z/OS Text Search: Installation and Administration for the Text Search Engine,
SH12-6716

v z/OS Text Search: Programming the Text Search Engine, SH12-6717

v z/OS Text Search: NetQuestion Solution, SH12-6718

© Copyright IBM Corp. 1993, 2001 vii

viii Text Search: Programming the Text Search Engine

Chapter 1. Before you start

This chapter provides an overview of the Text Search Engine interfaces described
in subsequent chapters, defines most of the interface concepts and terminology,
and explains the notation conventions used in this book.

Overview of the interfaces

The Text Search Engine application programming interface
The Text Search Engine API can be used as an interface between application
programs and Text Search Engine functions. It provides a general-purpose interface
for obtaining the information retrieval services of Text Search Engine, such as
searching for information or having documents indexed.

Application programs using the Text Search Engine API must be written in the C
programming language. Each Text Search Engine API function is invoked with a
CALL statement (C function call). All arguments are passed to Text Search Engine
separately as input parameters and results are returned as output parameters. The
conventions for data exchange and syntax notation are described in “Data
exchange conventions”.

The Text Search Engine library service interfaces
The library service interfaces are used as an interface between Text Search Engine
and the library system (or document access method) that manages the documents
indexed by Text Search Engine. They constitute a set of general-purpose interfaces
to provide library services to Text Search Engine, such as accessing (reading) the
documents to be indexed.

Text Search Engine provides a set of these service interfaces for flat files.
Installations can provide additional sets to support their own library system.

Each Text Search Engine library service function is invoked with a CALL statement
(C function call). The conventions for parameter passing and syntax notation are
described in “Data exchange conventions”.

The Text Search Engine text format
The Text Search Engine text format is a document format tailored to the needs of
indexing natural-language text. Installations or applications can pass documents in
this format to the Text Search Engine indexing services.

If you need support for multilingual documents, you can use the Text Search Engine
text format which allows you to switch languages within a document.

You should consider using the Text Search Engine text format as an interchange
format if you need to convert your documents into a format supported by Text
Search Engine. The document formats supported by Text Search Engine are listed
in file IMOLSDEF.H of the library services toolkit.

Data exchange conventions
All Text Search Engine programming interfaces are call interfaces using C function
calls. Data exchange is done explicitly via parameters of these functions.

© Copyright IBM Corp. 1993, 2001 1

In the Text Search Engine API and library service interfaces, there are two types of
parameters:

v Simple parameters

These are single values of a basic data type and include pointers, integers, and
characters. Specification rules for these parameters are given in “Passing
numerical values” on page 3 and “Passing character data” on page 3.

v Data stream parameters

These contain information of varying length and content. See “Basics about the
data streams” for an explanation of Text Search Engine data streams. The length
of a data stream parameter is passed as a separate integer parameter.

The Text Search Engine text format is a data stream format that conforms to the
concepts of Text Search Engine data streams explained in “Basics about the data
streams”.

Basics about the data streams
Data streams are a way of passing information of variable length and content. A
data stream is a sequence of information pieces, called data stream items, that:

v Identify themselves

v Have a common format so that they can be parsed by a program that does not
understand their purpose or information content.

This also allows programs to select only the information they need.

The data stream items are split into different fields. Each field, its length, and a
description of the data that it contains, is given in Table 1.

Table 1. Format of data stream items

Field Length Description

ll 2 bytes Total length of the item, including this length
field. This field is in big-endian format; that is:
value-of-ll = first byte × 256 + second byte.

id 2 bytes Item identifier. Each identifier has a mnemonic
code (such as IRS or TERM) that is used
throughout this book. The actual 2-byte
numeric values are defined in the toolkit files
supplied with Text Search Engine. This field is
in big-endian format; that is: value-of-id = first
byte × 256 + second byte.

t 1 byte Type of data stream item. There are three
types of data stream item: Start, End, and
Atomic. Start and end items (with identical
identifiers) are used to delimit related data
stream items. If a program ignores a start
item, it should also ignore all subsequent items
up to, and including, the matching end item.
Atomic items contain the actual information
pieces. Throughout this book, the three types
are shown as S, E, and A, respectively.

2 Text Search: Programming the Text Search Engine

Table 1. Format of data stream items (continued)

Field Length Description

data variable Data passed with the item. This field is
optional. Only the atomic data stream items
contain a data field. The format of item data is
either explicitly defined for the particular item
or governed by the rules outlined in “Passing
numerical values” and “Passing character
data”.

Throughout this book, data stream items are represented as:
ll id t data

The blank spaces are shown to improve readability; they are not part of the actual
data stream.

The syntax of data stream parameters and the syntax of the Text Search Engine
text format, a data stream format for documents, are specified in syntax diagrams.

Passing numerical values
Numerical values, passed as simple parameters, are always in the standard local
representation. On Intel-based platforms, this is the little-endian format, where bytes
are swapped in binary representation. For example, the value of a two-byte
unsigned integer is equal to:
(second byte × 256) + first byte

As a programmer, you need not be concerned about this because this
representation is handled properly by your system.

Data streams are designed to be independent of local conventions so that they can
be passed across mixed environments. Text Search Engine uses the big-endian
format for all numerical values in Text Search Engine data streams. This is the
format where bytes are not swapped in binary representation. Thus, the value of a
two-byte unsigned integer is equal to:
(first byte × 256) + second byte

As a programmer on Intel-based platforms, you need to be aware of this because it
is not the standard local representation.

To facilitate handling big-endian values on Intel-based platforms, the Text Search
Engine toolkits contain macros that convert big-endian format to little-endian, and
vice versa. The programming hints and samples for the individual interfaces contain
more details about these conversion macros.

In the library service interfaces, some data streams contain fields with date-time
values. The format of these values is explicitly defined in the Text Search Engine
library services toolkit.

Passing character data
Whenever character data is passed in interfaces, especially across systems or
environments, character encoding problems arise. Text Search Engine avoids these
problems whenever possible and sets up strict and simple rules when these
problems cannot be avoided.

Chapter 1. Before you start 3

The following rules apply to character data in parameters of the API and the library
service interfaces.

In the API functions, only data stream parameters can contain character data.
(Simple parameters defined as char actually contain binary information with no
code page dependencies.) In the library service functions, character data is
sometimes passed in simple parameters.

There are five types of character data:

v Text Search Engine names (such as index names or server names)

These are always passed in coded character set 00819 (ISO 8859-1)
representation. Since Text Search Engine uses a very limited character set
(uppercase letters A-Z, digits 0-9) for names, there should usually be no
transformation required for these names within your application or library
functions.

v External names (such as document names)

These are always passed in the local system code page, because they are
entered by a user on a local workstation, or are ready to be displayed on the
screen of a local workstation.

v Document identifiers (and document group identifiers)

These are not considered to be character data by Text Search Engine. There is
no coded character set associated with these identifiers. Instead, they are
handled as bit strings and are not transformed even when passed across
systems or environments.

v Document text

The textual content of documents to be indexed is always associated with a
coded character set and language, either explicitly (for example, when you use
the Text Search Engine text format) or implicitly by using defaults set by the
administrator.

v Search terms

These are always accompanied by a CCSID (coded character set identifier) and
language code so they can be properly handled by any Text Search Engine
server.

4 Text Search: Programming the Text Search Engine

Chapter 2. Linguistic processing

Text Search Engine offers linguistic processing in these areas:

v Indexing. When Text Search Engine analyzes documents to extract the terms to
be stored in the text index, the text is processed linguistically to extract significant
terms for the index. This is done to make retrieval as simple and as fast as
possible.

v Retrieval. When Text Search Engine searches through the document index to
find the names of documents that contain occurrences of the search terms you
have specified, the search terms are also processed linguistically to match them
with the indexed terms.

v No linguistic processing is applied to Ngram indexes.

The terms in an Ngram index are stored as they occur in the documents; no
linguistic processing is applied.

Linguistic processing for indexing
When Text Search Engine indexes and retrieves documents, it makes a linguistic
analysis of the text.

The linguistic processing used for indexing documents consists of:
v Basic text analysis

– Recognizing terms (tokenization)
– Normalizing terms to a standard form
– Recognizing sentences

v Reducing terms to their base form
v Stop-word filtering
v Decomposition (splitting compound terms).

This table shows a summary of how terms are indexed when the index type is
linguistic and no additional index properties have been requested.

Table 2. Term extraction for a linguistic index

Document text Term in index Linguistic processing

Mouse
Käfer

mouse
kaefer

Basic text analysis
(normalization)

mice
swum

mouse
swim

Reduction to base
form

system-based

Wetterbericht

system-based
system
base
wetterbericht
wetter
bericht

Decomposition

a report on
animals

report
animal

Stop-word filtering.
Stop words are: a, on

By comparison, the following table shows a summary of how terms are indexed
when the index type is precise.

© Copyright IBM Corp. 1993, 2001 5

Table 3. Term extraction for a precise index

Document text Term in index Linguistic processing

Mouse
Käfer

Mouse
Käfer

No normalization

mice
swum

mice
swum

No reduction to
base form

a report on animals report
animals

Stop-word filtering.
Stop words are: a, on

system-based
Wetterbericht

system-based
Wetterbericht

No decomposition

Sage mir Sage
sage

Sentence-begin
processing

Basic text analysis
Text Search Engine processes basic text analysis without using an electronic
dictionary.

Recognizing terms that contain nonalphanumeric characters
When documents are indexed, terms are recognized even when they contain
nonalphanumeric characters, for example: “don’t”, “$14,225.23”, “mother-in-law”,
and “10/22/90”.

The following are regarded as part of a term:
v Accents and apostrophes
v Currency signs
v Number separator characters (like “/” or “·”)
v The “@” character in e-mail addresses (English only).

Language-specific rules are also used to recognize terms containing:

v Accented prefixes in Roman languages, such as l’aventure in French.

v National formats for dates, time, and numbers.

v Alternatives, such as mission/responsibility, indicated in English using the “/”
character.

v Trailing apostrophes in Italian words like securita'. It is usual in typed Italian
text, when the character set does not include characters with accents, to type the
accent after the character; for example, “à” is typed “a'”.

Normalizing terms to a standard form
Normalizing reduces mixed-case terms, and terms containing accented or special
characters, to a standard form. This is done by default when the index type is
linguistic. In a precise index the case of letters is left unchanged; searches are
case-sensitive.

For example, the term Computer is indexed as computer, the uppercase letter is
changed to lowercase. A search for the term computer finds occurrences not only of
computer, but also of Computer. The effect of normalization during indexing is that
terms are indexed in the same way, regardless of how they are capitalized in the
document.

Normalization is applied not only during indexing, but also during retrieval.
Uppercase characters in a search term are changed to lowercase before the search
is made. When your search term is, for example, Computer, the term used in the

6 Text Search: Programming the Text Search Engine

search is computer. The combined effect of using normalization during indexing and
during retrieval is that, regardless of how you capitalize a search term, and
regardless of how it is capitalized in the document, the term is found.

Accented and special characters are normalized in a similar way. Any variation of
the French word école, such as École, finds école, Ecole, and so on. The German
word Bürger finds buerger, Maße finds masse.

If the search term includes masking (wildcard) characters, normalization is done
before the masking characters are processed. Example: Bür_er becomes buer_er.

Recognizing sentences
You can search for terms that occur in the same sentence. To make this possible,
each document is analyzed during indexing to find out where each sentence ends.

Reducing terms to their base form
In a linguistic index, you can search for mouse, for example, and find mice. Terms
are reduced to their base form for indexing; the term mice is indexed as mouse.
Later, when you use the search term mouse, the document is found. The document
is found also if you search for mice.

The effect is that you find documents containing information about mice, regardless
of which variation of the term mouse occurs in the document, or is used as a search
term.

In the same way, conjugated verbs are reduced to their infinitive; bought, for
example, becomes buy.

Stop-word filtering
Stop words are words such as prepositions and pronouns that occur frequently in
documents, and are therefore not suitable as search terms. Such words are in a
stop-word list associated with each dictionary, and are excluded from the indexing
process.

Stop word processing is case insensitive. So a stop word about also excludes the
first word in a sentence About. Stop-word filtering is in effect only when the stop
word list for the language in question is in the resource directory.

Decomposition (splitting compound terms)
German is rich in compound terms, like Versandetiketten, which means mail
(Versand) labels (Etiketten). Such compound terms can be split into their
components.

For a precise index, compound terms are indexed unchanged as one word. For a
linguistic index, compound terms are split during indexing. When you search,
compound terms are split if you have a linguistic index.

The components are found if they occur in any sequence in a document as long as
they are contained within one sentence. For example, when searching for the
German word Wetterbericht (weather report), a document containing the phrase
Bericht über das Wetter (report about the weather) would also be found.

An attempt is made to split a term if:

v The term has a certain minimum length

Chapter 2. Linguistic processing 7

v The term is not itself an entry in the electronic dictionary—compounds that are
commonly used like the German word Geschäftsbericht (business report) are in
the German dictionary.

If a split is found to be possible, the term’s component parts are then reduced to
their base form. For example, the compound term Kindersprachen has the
component parts kindersprache, kind, and sprache.

Linguistic processing for retrieval
Linguistic processing of search terms is controlled by the user through qualifiers in
the Text Search Engine query language. “EhwSearch” on page 125 explains the
effect of those qualifiers and relates them to the linguistic indexing functionality.

Query processing aims at making search terms weaker so that the recall rate of
searches is increased, that is, more relevant documents are found. There are two
basic operations on query terms to achieve that goal; they are expansions and
reductions. In addition, some search term operations involve both expansion and
reduction.

v Expansions take a word or a multi-word term from within a search term and
associate it with a set of alternative search terms, each of which may be a
multi-word term itself. The source expression and the set of target expressions
form a Boolean OR-expression in Text Search Engine’s query language. As
expansions leave the source term unchanged, they are to some extent
independent of the index type. The following are expansion operations:
– Synonym expansion
– Thesaurus expansion

v Reductions change the search term to a form that is more general than the one
specified by the user. Because it changes the search term, reductions are
dependent on the index type to ensure that the changed term matches.
Therefore, Text Search Engine derives reduction information from the type of
those indices or index that the query is directed against. The following are
reductions:
– Lemmatization
– Normalization
– Stop words.

v Some operations both change the search term and expand it with a set of
alternative terms. Due to the inherent reduction, these again depend on
information contained in the index.

The following operations fall into this class:
– Character and word masking
– Sound expansion.

Synonyms
Synonyms are semantically related words. Usually, these words have the same
word class or classes (such as noun, verb, and so on) as the source term.
Synonyms are obtained from a lexical resource which is specific for each language.
They are always returned in base form and, up to a few exceptions, are not
multi-word terms. Search term words are always reduced to their base form when
looking up synonyms. Synonym expansion cannot be applied to Ngram indexes.

Here are some examples of synonyms:

v English

8 Text Search: Programming the Text Search Engine

word - comment remark statement utterance term expression
communication message assurance guarantee warrant bidding command
charge commandment dictate direction directive injunction instruction
mandate order news advice intelligence tidings gossip buzz cry
hearsay murmur report rumor scuttlebutt tattle tittle-tattle
whispering

v French
mot - expression parole terme vocable lettre billet missive epître
plaisanterie

v German
Wort - Vokabel Bezeichnung Benennung Ausdruck Begriff Terminus
Ehrenwort Brocken Bekräftigung Versprechen Zusicherung Gelöbnis
Beteuerung Manneswort Schwur Eid Ausspruch

Thesaurus expansion
A search term can be expanded using thesaurus terms that can be reached through
a specific relation. These relations can be hierarchical (such as the “Narrower term”
relation), associative (such as a “Related term” relationship), or it can be a synonym
relationship. A thesaurus term can be, and often is, a multi-word term.

“Thesaurus concepts” on page 10 describes thesaurus expansion in more detail.

Sound expansion
Sound expansion expands single words through a set of similarly sounding words. It
is particularly useful whenever the exact spelling of a term to be searched is not
known. Sound expansion cannot be applied to Ngram indexes.

Character and word masking
Masking is a non-linguistic expansion technique, where a regular expression is
replaced with the disjunction of all indexed words that satisfy it. Neither a masked
expression nor any of its expansions is subject to lemmatization, stop-word
extraction, or any of the other expansion techniques. This can have the effect that,
for example, an irregular verb form like swum, when searched with the masked term
swu*, is matched on a precise index, but not on a linguistic index, where this form
has been lemmatized to become swim.

The supported languages
The following list shows the SBCS document languages supported by Text Search
Engine. Decomposition is supported for German only. The feature index, and
functions based on it, are supported for US and UK English only. Synonyms are not
supported for Norwegian Nynorsk and Bokmal. Only the logical (not the visual) file
format for documents written in bidirectional languages is supported.

Arabic
Brazilian
Canadian French
Catalan
Danish
Dutch
Finnish
French
German
Hebrew
Icelandic
Italian

Chapter 2. Linguistic processing 9

Norwegian Bokmal
Norwegian Nynorsk
Norwegian Bokmal and Nynorsk
Portuguese
Russian
Spanish
Swedish
Swiss German
UK English
US English

Thesaurus concepts
A thesaurus is a controlled vocabulary of semantically related terms that usually
covers a specific subject area. It can be visualized as a semantic network where
each term is represented by a node. If two terms are related to each other, their
nodes are connected by a link labeled with the relation name. All terms that are
directly related to a given term can be reached by following all connections that
leave its node. Further related terms can be reached by iteratively following all
connections leaving the nodes reached in the previous step. Figure 1 shows an
example of the structure of a very small thesaurus.

Text Search Engine lets you expand a search term by adding additional terms from
a thesaurus that you have previously created. Refer to “EhwSearch” on page 125 to
find out how to use thesaurus expansion in a query.

To create a thesaurus for using it in a search application requires a thesaurus
definition file that has to be compiled into an internal format, the thesaurus
dictionary.

Figure 1. A thesaurus displayed as a network

10 Text Search: Programming the Text Search Engine

The dictionary format used by an index of type XTYP_LINGUISTIC and
XTYP_PRECISE differs from the one used by an Ngram index. Thus two different
thesaurus compilers are provided with the product. They are not only slightly
different in the concepts they are based on, but require different source formats. So
you should first decide which index type you will use before you start defining the
thesauri for your search application.

A thesaurus that can be used with an index of type XTYP_PRECISE or
XTYP_LINGUISTIC is referred to as a Text Search Engine thesaurus. A thesaurus
for an Ngram index is called an Ngram thesaurus.

The basic components of a Text Search Engine thesaurus or an Ngram thesaurus
are “terms” and “relations”.

Terms
A term is a word or expression denoting a concept within the subject domain of the
thesaurus. For example, the following could be terms in one or more thesauri:

data processing
helicopter
gross national product

In a Text Search Engine thesarus, terms are classified as either descriptors or
nondescriptors. A descriptor is a term in a class of synonyms that is the preferred
term for indexing and searching. The other terms in the class are called
nondescriptors. For example, outline and shape are synonymous, where shape
could be the descriptor and outline a nondescriptor.

An Ngram thesaurus does not distinguish between descriptors and nondescriptors.

Relations
A relation is an expression of an association between two terms. Relations have the
following properties:

v The depth of a relation is the number of levels over which the relation extends.
This is specified in the search syntax using the THESDEPTH keyword. Refer to
“EhwSearch” on page 125 to find out how to use thesaurus expansion in a query.

v The directionality of a relation specifies whether the relation is true equally from
one term to the other (bidirectional), or in one direction only (unidirectional).

Thesaurus expansion can use every relation defined in the thesaurus. You can also
specify the depth of the expansion. This is the maximum number of transitions from
a source term to a target term. Note however that the term set may increase
exponentially as the depth is incremented.

The following example shows those terms that are newly added as the depth
increases.
health

health service, paramedical, medicine, illness

allergology, virology, veterinary medicine, toxicology, surgery,
stomatology, rhumatology, radiotherapy, psychiatry, preventive
medicine, pathology, odontology, nutrition, nuclear medicine,
neurology, nephrology, medical check up, industrial medicine,
hematology, general medicine, epidemiology, clinical trial,
cardiology, cancerology

Chapter 2. Linguistic processing 11

Text Search Engine thesaurus relations
These are the relation types provided by a Text Search Engine thesaurus:

v Associative

v Synonymous

v Hierarchical

v Other

In a Text Search Engine thesaurus there are no predefined relations. You can give
each relation a name, such as BROADER TERM, which can be a mnemonic
abbreviation, such as BT. The common relations used in thesaurus design are:

v BT or BROADER TERM

v NT or NARROWER TERM

v RT or RELATED TERM

v SYN or SYNONYM

v USE

v UF or USE FOR

Associative: An associative relation is a bidirectional relation between descriptors,
extending to any depth. It binds two terms that are neither equivalent nor
hierarchical, yet are semantically associated to such an extent that the link between
them may suggest additional terms for use in indexing or retrieval.

Associative relations are commonly designated as RT (related term). Examples are:
dog RT security
pet RT veterinarian

Synonymous: When a distinction is made between descriptors and
nondescriptors, as it is in a Text Search Engine thesaurus, the synonymous relation
is unidirectional between two terms that have the same or similar meaning. In a
class of synonyms, one of the terms is designated as the descriptor. The other
terms are then called nondescriptors. Refer to “Ngram thesaurus relations” on
page 13 for a definition of the synonymous relation when no distinction is made
between descriptors and nondescriptors.

The common designation USE leads from a given nondescriptor to its descriptor.
The common designation USE FOR leads from the descriptor to each
nondescriptor. For example:

feline USE cat
lawyer UF advocate

Hierarchical: A hierarchical relation is a unidirectional relation between descriptors
that states that one of the terms is more specific, or less general, than the other.
This difference leads to representation of the terms as a hierarchy, where one term
represents a class, and subordinate terms refer to its member parts. For example,
the term “mouse” belongs to the class “rodent”.

BROADER TERM and NARROWER TERM are hierarchical relations. For example:
car NT limousine
equine BT horse

Other: A relation of type other is the most general. It represents an association
that does not easily fall into one of the other categories. A relation of type other can
be bidirectional or unidirectional, there is no depth restriction, and relations can
exist between descriptors and nondescriptors.

12 Text Search: Programming the Text Search Engine

This relation is often used for new terms in a thesaurus until the proper relation with
other terms can be determined.

Of course you can define your own bidirectional synonymous relation by using the
relation type associative for a synonymous relation between descriptors or even
with the relation type other for a synonymous relation between arbitrary terms.

Ngram thesaurus relations
An Ngram thesaurus supports the following two types:

v Associative

v Synonymous

There are two predefined relations, each of them based on one of these two types.
You can define your own relations based on the type associative. For details, see
“Creating an Ngram thesaurus” on page 16.

Associative
An associative relation is a bidirectional relation between two terms that do not
express the same concept but relate to each other. The predefined relation
RELATED_TO and all user-defined relations are based on this relation type.

Examples are:
tennis RELATED_TO racket
German RELATED_TO sausage

Synonymous
A synonym relation is a bidirectional relation between two terms that have the same
or similar meaning and can be used as alternatives for each other. This relation
can, for example, be used for a term and its abbreviation. The predefined relation
SYNONYM_OF is the only relation based on this type.

Examples are:
spot SYNONYM_OF stain
US SYNONYM_OF United States

Creating a Text Search Engine thesaurus
There is a sample English thesaurus compiler input file imothes.sgm stored in the
resource directory of the installation path. A compiled version of this SGML input is
also stored there. The files belonging to this thesaurus are called imothes.th1,
imothes.th2, ..., and imothes.th6.

To create a thesaurus, first define its content in a file. It is recommended that you
use a plain directory for each thesaurus that you define. The file can have any
extension except th1 to th6, which are used for the thesaurus dictionary. If you use
the same directory for an Ngram thesaurus, see “Creating an Ngram thesaurus” on
page 16 for more excluded file extensions.

Then compile the file by running:
imothesc -f filename -ccsid ccsid

where ccsid is 850 on workstation platforms, or 500 on z/OS.

imothesc produces thesaurus files having the name filename without extension and
the extension th1 to th6, in the same directory where the definition file is located. If
there is already a thesaurus with the same name, it is overwritten without warning.

Chapter 2. Linguistic processing 13

Refer to “EhwSearch” on page 125 to find out how to use a thesaurus in a query.

Specify the content of a thesaurus using the Standard Generalized Markup
Language (SGML). The following diagram shows the syntax rules to follow when
creating a thesaurus.

<< <thesaurus> <header> <thname> thesaurus-name </thname> <

< ?<rldef> relation-definition </rldef> </header> <

< ? thesaurus-entry </thesaurus> <@

relation-definition:

<rls> <rlname> relation-name </rlname> <

< <rltype> ASSOCIATIVE </rltype>
SYNONYMOUS
HIERARCHICAL
OTHER

</rls>

thesaurus-entry:

<en> unique-number , 1
2

<t> term </t>
related-terms

<

< </en>

related-terms:

<r> ? ?<l> relation-name <t> term </t> </l> </r>

Figure 2 on page 15 shows the SGML definition of the thesaurus shown in Figure 1
on page 10.

14 Text Search: Programming the Text Search Engine

<thesaurus>
<header>
<thname>thesc example thesaurus</thname>
<rldef>
<rls>
<rlname>Related Term</rlname>
<rltype>associative</rltype>
</rls>
<rls>
<rlname>Narrower Term</rlname>
<rltype>hierarchical</rltype>
</rls>
<rls>
<rlname>Instance</rlname>
<rltype>hierarchical</rltype>
</rls>
<rls>
<rlname>Synonym</rlname>
<rltype>synonymous</rltype>
</rls>
</rldef>
</header>

<en> 2, 1
<t>database management system</t>
<r>

<l>Narrower Term
<t>oo database management system</t>
<t>relational database management system</t>
</l>
<l>Synonym
<t>DBMS</t>
</l>
<l>Related Term
<t>document management system</t>
</l>
<l>Instance
<t>database</t>
</l>

</r>
</en>

Figure 2. The definition of a simple thesaurus (Part 1 of 2)

Chapter 2. Linguistic processing 15

Creating an Ngram thesaurus
There is a sample English Ngram thesaurus compiler input file imonthes.def stored
in the resource directory of the installation path. A compiled version of this sample
thesaurus is also stored there. The files belonging to this thesaurus are called
imonthes.<extension> with the following extension where n is a digit:

v For dictionary files: wdf, wdv, grf, grv, MEY, ROS, NEY, SOS, lkn

v For temporary files: wnf, wnv, gnf, gnv, M!1, M!2, N!1, N!2, R!1, R!2, S!1, S!2,
Mnn, Nnn, Rnn, Snn, $00, $01, $10, $11, $20, and $21

<en> 5, 1
<t> relational database management system </t>
<r>

<l>Narrower Term
<t>object relational database management system</t>
</l>

</r>
</en>

<en> 3, 1
<t>object relational database management system</t>
<r>

<l>Instance
<t>DB2 Universal Database</t>
</l>

</r>
</en>

<en> 6, 1
<t>object oriented database management system</t>
<r>

<l>Narrower Term
<t>object relational database management system</t>
</l>

</r>
</en>

<en> 4, 1
<t>document management system</t>
<r>

<l>Synonym
<t>library</t>
</l>

</r>
</en>

<en> 9, 1
<t>library</t>
</en>

<en> 10, 1
<t>DB2 Unversal Database</t>
</en>

<en> 11, 1
<t>database</t>
</en>
</thesaurus>

Figure 2. The definition of a simple thesaurus (Part 2 of 2)

16 Text Search: Programming the Text Search Engine

To create an Ngram thesaurus, first define its content in a definition file. You can
have several thesauri in the same directory, but it is recommended that you have a
separate directory for each thesaurus. The length of the file name without extension
must not exceed 8 characters. The extension is optional but is restricted to 3
characters and should be different from any of the above listed extensions.

If you use the same directory for your Text Search Engine thesauri, do not use the
extensions either listed in “Creating a Text Search Engine thesaurus” on page 13
either.

Then compile the file by running:
imothesn -f definition-file-name -ccsid ccsid

Here is a list of the code pages supported by an Ngram thesaurus:

ASCII 850 PC Data Latin-1

932 Combined Japanese

942 Combined Japanese

943 Combined Japanese

949 Combined Korean

950 Combined Traditional Chinese

970 Combined Korean

1363 Combined Korean

1381 Combined Simplified Chinese

EBCDIC 00500 Latin-1

00933 Korean

00937 Traditional Chinese

01388 Simplified Chinese

05026 Japanese Katakana

05035 Japanese Latin

imothesn produces thesaurus files having the same name as definition-file-name
with the extensions mentioned above. The files are created in the same directory as
the definition file. If there already exists a thesaurus with the same name in this
directory it is overwritten without warning.

Chapter 2. Linguistic processing 17

Specify the content of the thesaurus using the following syntax diagram:

<< ? group-definition-block
comment-line

<@

group-definition-block:

block-starting-line \n ? member-term-definition \n
associated-term-definition

block-starting-line:

:WORDS
member-relation

member-relation:

:SYNONYM
:RELATED
:RELATED (number)

member-term-definition:

member-term

associated-term-definition:

.RELATED_TO

.SYNONYM_OF

.RELATED_TO (number)

associated-term

comment-line:

any-comment

Each member term must be written to a single line. Each associated term must be
preceded by the relation name. The associated term is related to each member
term with respect to the specified relation. If all member terms are related to each
other, this can be specified using a member relation. Example:

18 Text Search: Programming the Text Search Engine

:WORDS:SYNONYM
reject
decline
RELATED_TO(1) accept

The length of member terms and associated terms is restricted to 164 characters.
Single-byte characters and double-byte characters of the same letter are regarded
as the same. Capital and small letters are not distinct. A term can contain a blank
character but either the single-byte character period ″.″ or colon ″:″ can be used.

The user-defined relations are all based on the associative type. They are identified
by unique numbers between 1 and 128. For a definition of the associative relation
type, refer to “Ngram thesaurus relations” on page 13.

If an application wants to use symbolic names for their thesaurus relations instead
of the relation name and number, it must administrate the mapping itself. For
example, if the relation OPPOSITE_OF was defined as RELATED_TO(1), the
application has to map this name to the internal relation name RELATED_TO(1).
Refer to “EhwSearch” on page 125 to find out how to use thesaurus expansion in a
query.

Chapter 2. Linguistic processing 19

20 Text Search: Programming the Text Search Engine

Chapter 3. Using the API functions

This chapter describes how the API functions can be used together in a logical
sequence. A more detailed description of each function is given in alphabetical
order in “Chapter 5. Calling the API functions” on page 37. These are the subjects
described in this chapter:

v Listing the servers and starting a session

v Creating and setting up an index

v Working with an index

v Searching for documents

v Working with the result of a search

v Working with result views

Listing the servers and starting a session
Use EhwListServers to obtain a list of the available Text Search Engine search
service names.

To use Text Search Engine information-retrieval services, run EhwStartSession to
start a session with a particular Text Search Engine server.

When you no longer need a particular Text Search Engine server session, use
EhwEndSession to close it.

The Text Search Engine server must be started before you can start a session.

Creating and setting up an index
Many of the API functions work with an index and require the handle of an index as
an input parameter. This section describes how to create and open an index.

Figure 3. Listing the servers and starting a session

© Copyright IBM Corp. 1993, 2001 21

Creating and deleting an index
This step describes how to create an empty index. Inserting document terms into
the index is described in “Scheduling and indexing documents” on page 24.

Before you create the empty index, collect the following information:
v The index name
v The index type
v The name of the executable files for the library services server and client
v The location where you want the index to be stored
v The location where you want work files to be stored
v The Text Search Engine library server names of your installation.

Open a Text Search Engine session using EhwStartSession, then use
EhwCreateIndex to create the index.

There is a related function, EhwDeleteIndex, that you would not normally use to
delete a working index, but that can be useful for deleting test indexes.

Getting the names of the existing indexes
Before you can work with an index you must open it. To do this, you must know the
name of the index. Use EhwListIndexes to get the names of the indexes that are
accessible through the Text Search Engine server with which you have established
a session. If the list is long, a continuation condition indicates whether you need to
repeat the function to get the entire list. The function EhwCancelContinuation is
useful if you have reached a continuation condition, but nevertheless want to restart
EhwListIndexes to get the list again from the beginning.

Figure 4. Creating and deleting an index

Figure 5. Getting the names of the existing indexes

22 Text Search: Programming the Text Search Engine

Suspending and resuming an index
EhwSuspendIndex stops all administration tasks on and index, and prevent any
further administration tasks on that index. This function can also be used to stop
and prevent searches.

To allow the index to be used again, use the EhwResumeIndex function.

Opening an index
You must open an index before you can use or update the information that it
contains. Use EhwOpenIndex to open the index. This function provides an index
handle that is used by other functions that process the index. These are described
in “Working with an index” on page 24 and “Searching for documents” on page 26.

When you have finished working with an index, close it using EhwCloseIndex.

Getting index information
While an index is open, you can use EhwGetIndexInfo to verify the information that
you specified when you created the index, such as the index name, type, and the
names of the library services executables.

Setting and getting the default indexing rules
When indexing a document, Text Search Engine needs to know:

Figure 6. Suspending and resuming an index

Figure 7. Opening an index

Figure 8. Getting index information

Chapter 3. Using the API functions 23

v Which type of document it is; for example a WordPerfect document, or a flat
ASCII file

v Which language is the document written in

v Which Coded Character Set Identifier (CCSID) is used.

Text Search Engine can detect most of the supported document types automatically.
If for some reason automatic recognition is not possible, Text Search Engine refers
to default values that you establish.

Use the EhwSetIndexingRules function to define the default indexing rules.

There is a corresponding function EhwGetIndexingRules that lets you verify the
rules settings that you have made.

Working with an index
This section describes the following functions:

v Scheduling and indexing documents

v Getting the index status

v Improving performance and the use of storage

v Setting and getting the index function status.

Scheduling and indexing documents
Indexing is a two-step process:

1. Schedule the documents that are to be indexed, that is, put them in a queue for
indexing. Use EhwScheduleDocument to do this.

2. Later, preferably when the system is lightly loaded, index the documents. Use
EhwUpdateIndex to do this. This function starts a server task that updates the
Text Search Engine index by processing the scheduled documents.

You can also schedule documents for deletion from an index.

Figure 9. Setting and getting the default indexing rules

24 Text Search: Programming the Text Search Engine

You can delete all scheduled entries from the indexing queue using
EhwClearScheduledDocuments. To remove the complete contents of an index,
use EhwClearIndex.

Getting the index status
Use EhwGetIndexStatus to get the following information about an index:
v The number of documents in the index
v The number of requests in the scheduling queue
v The number of messages that occurred during indexing.

Improving performance and the use of storage
Use the EhwReorgIndex function to start a server task that removes obsolete
information from the index and to compress the information to improve performance
and the use of storage.

Obsolete entries can occur in an index when documents that have previously been
indexed are deleted. EhwReorgIndex checks for each term that its related
document still exists. If the document no longer exists, the term is removed from the
index. This function does not check whether documents exist in the library; it
removes index entries that belong to documents whose identifier indicates that the
document has been deleted.

When EhwGetIndexStatus returns the number of documents in an index, it
distinguishes between a primary index and a secondary index. Text Search Engine
looks in both parts of the index during a search. Each time you index documents,
the indexed terms are stored in the secondary index. The size of the secondary
index directly affects the indexing speed; as the secondary index grows, indexing
becomes less efficient. So, from time to time, you should run EhwReorgIndex to
move (merge) the indexed terms from the secondary index into the primary index.

Figure 10. Scheduling and indexing documents

Figure 11. Getting the index status

Chapter 3. Using the API functions 25

Setting and getting the index function status
EhwGetIndexFunctionStatus supplies status information about the Text Search
Engine functions searching, queuing, indexing, and merging. The information
indicates if the function is enabled, stopped, or running.

EhwSetIndexFunctionStatus allows you to change the status of these functions to
enable or disable a function, or to reset a function in error.

Searching for documents
After you have opened a session and then opened one or more indexes, you can
search for text. You can search in one index or in several. A search in more than
one index concurrently is called a cross-index search.

You can restrict the scope of a search to certain documents or groups of
documents.

The search functions
To search for text in a single index, in an open Text Search Engine session:
1. Open an index using EhwOpenIndex
2. Search for documents using EhwSearch
3. Close the index using EhwCloseIndex.

To make a cross-index search:
1. Open several indexes
2. Create an index group using EhwCreateIndexGroup
3. Search for documents
4. Delete the index group using EhwDeleteIndexGroup
5. Close the indexes.

Figure 12. Improving performance and the use of storage

Figure 13. Setting and getting the index function status

26 Text Search: Programming the Text Search Engine

You can specify a query to search the textual content of documents that are
indexed in a particular Text Search Engine index. The result of a search, the search
result, is a list of documents that match the query.

In the query, you can specify:
v One or several search criteria connected with Boolean operators
v Processing conditions, such as a time limit or a request for ranking information
v The scope of the query to restrict the result set.

The search criteria can be:

v A single search argument that must be found (or must not be found) in a
qualifying document.

v Two or more search arguments that must satisfy a proximity condition, such as
occurring within a single paragraph of a qualifying document.

v A free-text search argument that can consist of a single word, a phrase, or a
sentence.

A search argument is one or several search terms, at least one of which must be
found.

A search term is a word or phrase in a specified coded character set and language.
You can mask a word or phrase in a search term by defining appropriate masking
characters (also called global or wildcard characters).

Specifying the scope of a cross-index search
You can specify which documents or which groups of documents can be included in
the result of a query. This is known as specifying the scope of a search. You specify
a scope for a single-index query in the query itself. To specify a scope for a

Figure 14. The search functions

Chapter 3. Using the API functions 27

cross-index search, however, you must use EhwAddQueryScope. The scope is
valid only for the duration of the search.

Working with the result of a search
When a search is complete, a search result handle is available that lets you identify
the documents that were found by the search.

When you no longer require search results, use EhwDeleteResult to release
storage space.

Finding matches in search results
If you intend to develop a browser to view documents, it would be useful to highlight
the found terms. This is an example for the use of EhwGetMatches. Use the
function EhwOpenDocument and then use EhwGetMatches to get the text of the
document and information for highlighting the search terms. The browse
specifications determine which document is to be browsed. You can repeat this
sequence to browse other documents.

EhwGetMatches gets portions of text. You can repeat it until the complete
document has been brought in.

Figure 15. Specifying the scope of a cross-index search

28 Text Search: Programming the Text Search Engine

Getting problem information for a cross-index search
When you make a search on a group of indexes, the return code applies to the
group. Use the function EhwGetProblemInfo to get the return codes for each index
individually.

Working with result views
You can create a view of the found documents so that other API functions can
select from this view, or sort the view, or cluster it, or use it to generate new query
terms.

Creating and ranking a result view
Use EhwCreateResultView to create a view of the documents found by a search.
Unlike EhwListResult, this function returns a handle that allows the result view to
be used by other API functions.

Figure 16. Browsing documents using your own browser

Figure 17. Getting problem information for a cross-index search

Chapter 3. Using the API functions 29

Before you create the result view, you can use EhwRank to assign a rank value to
each document. Note that a result can be ranked only if the RANK processing
condition was used for the corresponding EhwSearch call, or if the query data
stream included a freetext search argument. Whenever a result list is being ranked,
the rank information is available in all views derived from this list. So EhwRank can
be called both before and after a result view has been created.

After you have created the result view, run EhwSort to reorder the result by rank
values.

Selecting from and sorting a result view
Use the function EhwSelectResultView to select some of the documents in the
result view to create a subset in a new result view. Various selection criteria can be
applied joined either with a Boolean AND or a NOT operator. Use EhwSort to sort
a given result view according to various criteria, such as rack values. Note that
EhwSort, unlike EhwSelectResultView, does not generate a new result view, but
sorts an existing view.

The new view can be sorted and worked with in the same way as the original view
created by EhwCreateResultView.

Figure 18. Creating and ranking a result view

30 Text Search: Programming the Text Search Engine

Getting the contents of a result view
Use EhwGetResultView to get the contents of a result view created either by
EhwCreateResultView or EhwSelectResultView. If the view is long, a continuation
condition indicates whether you need to repeat the function to get the entire view.
The function EhwCancelContinuation is useful if you have reached a continuation
condition, but nevertheless want to restart EhwGetResultView to get the view
again from the beginning.

Working with structured documents
Documents in a flat-file format may contain tags used to denote text sections, such
as author or subject. Text Search Engine uses no predefined set of allowed tags.
Instead, an application must define tags to be supported.

Not only flat files, but also HTML and XML document formats are supported.
Elements in XML, and tags in HTML, correspond to section tags. For XML format,
nesting of sections is supported.

For details, see the Text Search Engine: Customization and Administration manual.

Figure 19. Selecting from and sorting a result view

Figure 20. Getting the contents of a result view

Chapter 3. Using the API functions 31

During EhwCreateIndex, the global model definition file is accessed.

An update on a section-enabled index is possible only after a call to
EhwSetIndexingRules.

Figure 21. Creating an index enabled for section support

32 Text Search: Programming the Text Search Engine

Chapter 4. Setting up your application

This chapter describes the environment where you can use the API, and explains
how to set up your application for using Text Search Engine services. It also
provides some general hints for programming the API function calls.

What the API provides
The Text Search Engine API can be used as an interface between application
programs and Text Search Engine functions. It provides a general-purpose interface
for obtaining the information retrieval services of Text Search Engine. The Text
Search Engine server that provides these services can be installed on the local
workstation, or on a remote workstation in a LAN environment (see “Environment
and system overview” for more details).

The API works on a session basis. Before using any of the Text Search Engine
information-retrieval requests, you must start a session with the Text Search Engine
server. Outside a session, an application can list the Text Search Engine servers
with which it can start a session from the particular client workstation.

Application programs using the Text Search Engine API must be written in the C
programming language. Each Text Search Engine API function is invoked with a
CALL statement (C function call). All arguments are passed to Text Search Engine
separately as input parameters and results are returned as output parameters.
Variable data, for both input and output, is passed in the form of data streams. For
general conventions on parameter passing and for an explanation of Text Search
Engine data streams, see “Data exchange conventions” on page 1.

Text Search Engine responds to each function call with a return code. In
compliance with C programming conventions, the return code is the C function
value. This indicates whether the call was successful, partially successful, or
whether it caused an error condition. Where there are input errors, no corrective
action is taken by Text Search Engine; instead, the call is rejected. Additional
diagnosis information can also be returned, to indicate the cause of the error.

Some requests can produce large results. Where a result is too large to be handled
conveniently in main storage, it is divided into blocks, and each block is passed
separately to the application. In any case, Text Search Engine acquires the storage
for the result of a function call and then passes the address of the storage to the
application.

The processing of a request cannot be interrupted. However, a time limit or result
limit can be specified for the processing of search requests.

Environment and system overview
Text Search Engine is designed for a LAN client-server environment and for
stand-alone workstations. Depending on the special needs for work group
management, a Text Search Engine installation in a LAN is flexible and can
comprise:

v One or several Text Search Engine LAN servers

v Clients with access to one or several remote Text Search Engine servers

v Clients containing a local Text Search Engine server and having access to
remote servers.

© Copyright IBM Corp. 1993, 2001 33

The API is available on any Text Search Engine client. Once the installation of any
of the above combinations is set up, applications using the Text Search Engine API
can obtain the services of any Text Search Engine server accessible from the local
Text Search Engine client.

Note that the server must have been started before a connection is possible.

Figure 22 shows a typical configuration.

Setting up your application
Do the following to use your application program with the Text Search Engine API:

1. Define symbolic names and prototypes

2. Link your application

Defining symbolic names
The symbolic name definitions and the function prototypes are provided in
IMOAPIC.H as part of the API toolkit. The symbolic names are used for constants
such as return codes, data stream item identifiers, and data stream item types. To
include these definitions in your application program, add the following statement:
#include <imoapic.h>

Linking your application
To use your application program with the Text Search Engine API, link your program
to the API.

For Windows NT systems
Text Search Engine API functions are contained in the dynamic link library
IMOAPI.DLL. The external API function calls are resolved in the import library
IMOAPI.LIB.

Figure 22. Text Search Engine sample configuration

34 Text Search: Programming the Text Search Engine

To link your application with the API dynamic link library IMOAPI.DLL use
IMOAPI.LIB as the library file.

For UNIX systems
In AIX®, Text Search Engine API functions are contained in the shared library
libimoapi.a.

In Solaris, Text Search Engine API functions are contained in the shared library
libimoapi.so.

To link your application with this library, use the following link option with your linker:
-l imoapi

For z/OS systems
Text Search Engine API functions are reachable via the definition side deck
imoapi.x.

To link your application, add imoapi.x to your linker input.

Some programming hints
Here are some points to consider when you are designing and writing the
application program:

v All storage used for data stream output resulting from API function calls is reused
or released by Text Search Engine with a subsequent call. Therefore, it is
important to save any information that is required after a subsequent call.

v Input data streams should contain only items that are defined for the particular
API function. Text Search Engine does not ignore unknown items. Any unknown
items in an input data stream result in a syntax error.

v For output data streams, the application should ignore unknown items. This
programming practice ensures that the data streams have no extensions.

v For reading and writing numeric fields in data streams, such as item lengths, item
identifiers, and various item data fields, use the macros VAL2() and ID() in your
application program. These C macros convert two-byte integer variables (VAL2)
or constants (ID) from the big-endian format used in data streams to the local
standard format and vice versa. These macros are provided with the Text Search
Engine API toolkit in file IMOAPIC.H.

These C macros also work in environments where the standard is not the
little-endian format. So these macros should help you build portable applications.

Chapter 4. Setting up your application 35

36 Text Search: Programming the Text Search Engine

Chapter 5. Calling the API functions

This chapter describes each function of the Text Search Engine API, giving the
related input and output parameters, and explaining the parameters that must be
provided or are returned in a data stream format. Each function description contains
usage examples. The API functions are described in alphabetic order.

“Chapter 3. Using the API functions” on page 21 describes how the API functions
can be used together in the sequence that they are intended to be used.

© Copyright IBM Corp. 1993, 2001 37

EhwAddQueryScope
This function adds information to a cross-index search that determines which
documents or groups of documents, can be included in the result. The scope
information is kept only until the cross-index search has been completed; the query
scope has to be set again for each new EhwSearch call that searches on an index
group.

Input parameters
session pointer

Identifies the information-retrieval session. It is the pointer returned by
EhwStartSession when you start a session.

index group handle
The handle of the index group to be searched. This handle is returned by a
previous EhwCreateIndexGroup call.

data stream length
The length, in bytes, of the data contained in the query scope parameter.

query scope
Query scope is not supported for libraries, it is supported only for file systems.
The query scope information for filtering the search result. This parameter is
supplied in a data stream format (see “Data stream syntax”).

Output parameters
diagnosis information

Returned only with return codes RC_DATASTREAM_SYNTAX_ERROR and
RC_INDEX_NOT_MEMBER_OF_GROUP. It contains an offset value that points
to a data stream item in the query scope parameter that caused the error. For
example, the item may be out of sequence, or it may have an unknown
identifier or type.

return code
The following return code values can be returned with this call:

RC_DONE
RC_UNKNOWN_SESSION_POINTER
RC_INCORRECT_HANDLE
RC_DATASTREAM_SYNTAX_ERROR
RC_QUERY_SCOPE_TOO_COMPLEX
RC_UNEXPECTED_ERROR
RC_NOT_ENOUGH_MEMORY
RC_INDEX_NOT_MEMBER_OF_GROUP

See “Appendix A. The API return codes” on page 191 for more information
about these codes.

Data stream syntax

Query scope

<< 05 QSS S ? Index/document
Document

05 QSS E <@

AddQueryScope

38 Text Search: Programming the Text Search Engine

Index/document:

05 IRX S ?ll XNAM A index_name Document 05 IRX E

Document:

ll DID A document_identifier
ll DGID A document_group_id

The data stream items are:

QSS
Delimits the specification of a query scope. If you specify a query scope, the
search result is limited to the set of documents defined by the scope. The query
scope is either a list of document identifiers or a list of document group
identifiers.

IRX
Delimits the scope information supplied for an index.

XNAM
The name of the index for which the scope is specified. Each index name must
be a member of the input index group of the current session.

DID
Specifies the identifier of a document that is indexed in the information-retrieval
index to be searched.

DGID
Specifies a document group identifier, such as a directory name in the
platform’s file system.

Note: The specification of document groups as a query scope assumes the
naming convention where document identifiers (fully qualified file names)
always start with the document group identifier (subdirectory name). You
should not use this feature with library systems that have different
naming conventions.

Usage
In a query, you specify criteria for searching the textual content of indexed
documents. For a cross-index search the query scope has to be supplied separately
using the EhwAddQueryScope API call. The scope setting is valid only for the
duration of a search.

Example
This is an example of an EhwAddQueryScope function call:

/*---*/
/* Issue an API function call to add a scope to a query */
/*---*/
ulReturnCode =
EhwAddQueryScope (pSession, /* In -- session pointer */

ulIndexGrpHandle, /* In -- index group handle */
ulDataLength, /* In -- data stream length */

AddQueryScope

Chapter 5. Calling the API functions 39

pDataStream, /* In -- query scope for grp*/
&ulDiagnosisInfo); /* Out -- diagnosis info */

if (ulReturnCode != RC_DONE) /* check the API return code */
{

/* handle the function error */
} /* endif API call failed */

/*---*/

If the query scope for one index of a group is desired, the area pointed to by
pDataStream could contain the following data stream, and ulDataLength would have
a value of 47.

Symbolic notation Hexadecimal representation

05 QSS S 0005 0069 E2
05 IRX S 0005 0032 E2
13 XNAM A EHWINDEX 000D 003C C1 454857494E444558
14 DGID A e:\group1 000E 006B C1 653A5C67726F757031
05 IRX E 0005 0032 C5
05 QSS E 0005 0069 C5

AddQueryScope

40 Text Search: Programming the Text Search Engine

EhwCancelContinuation
This function resets the continuation mode of a preceding function call.

Input parameters
session pointer

Identifies the information-retrieval session. It is the pointer returned by
EhwStartSession when you start a session.

Output parameters
diagnosis information

There is no diagnosis information returned for this call.

return code
The following return code values can be returned with this call:

RC_DONE
RC_UNKNOWN_SESSION_POINTER
RC_REQUEST_IN_PROGRESS
RC_UNEXPECTED_ERROR
RC_SERVER_NOT_AVAILABLE
RC_SERVER_BUSY
RC_SERVER_CONNECTION_LOST
RC_COMMUNICATION_PROBLEM
RC_IO_PROBLEM

See “Appendix A. The API return codes” on page 191 for more information
about these codes.

Usage
The EhwCancelContinuation call is required only to reset a pending service. It can
be used after an EhwListIndexes or EhwListResult call with return code
RC_CONTINUATION_MODE_ENTERED when you are not interested in receiving
the remaining information.

Example
In the following example, the EhwCancelContinuation call ensures that a possible
subsequent EhwListResult function call with the same result handle returns the first
portion of the result list data stream.

/*---*/
do
{

ulReturnCode =
EhwListResult (pSession, /* In -- session pointer */

ulResultHandle, /* In -- result handle */
&ulDataLength, /* Out -- data stream length */
&pDataStream, /* Out -- document list */
&ulDiagnosisInfo);/* Out -- diagnosis info. */

/* check the API return code */
if ((ulReturnCode != RC_DONE) &&;

(ulReturnCode != RC_CONTINUATION_MODE_ENTERED))
{

/* handle the function error */
} /* endif API call failed */

/*--*/
/* parse the result view data stream ... */
/*--*/

CancelContinuation

Chapter 5. Calling the API functions 41

/* ... */
if (Condition) /* check end of loop condition */
{

break; /* leave the loop prematurely */
}

} while (ulReturnCode == RC_CONTINUATION_MODE_ENTERED)

if (ulReturnCode == RC_CONTINUATION_MODE_ENTERED)
{

/*--*/
/* cancel the pending continuation mode */
/*--*/
ulReturnCode = EhwCancelContinuation

(
pSession, /* In -- session pointer */
pulDiagnosisInfo /* Out -- diagnosis info */
);

if (ulReturnCode != RC_DONE) /* check the API return code */
{

/* handle the function error */
} /* endif API call failed */

} /* endif continuation mode */
/*---*/

CancelContinuation

42 Text Search: Programming the Text Search Engine

EhwClearIndex
This function removes all indexed terms from an information-retrieval index.

Input parameters
session pointer

Identifies the information-retrieval session. It is the pointer returned by
EhwStartSession when you start a session.

index handle
Identifies the information-retrieval index to be cleared. It is the handle returned
by EhwOpenIndex when the index is opened.

Output parameters
diagnosis information

There is no diagnosis information returned for this call.

return code
The following return code values can be returned with this call:

RC_DONE
RC_UNKNOWN_SESSION_POINTER
RC_INCORRECT_HANDLE
RC_REQUEST_IN_PROGRESS
RC_INCORRECT_AUTHENTICATION (Text Search Engine for AIX only)
RC_UNEXPECTED_ERROR
RC_SERVER_NOT_AVAILABLE
RC_SERVER_BUSY
RC_SERVER_CONNECTION_LOST
RC_CONFLICTING_TASK_RUNNING
RC_NOT_ENOUGH_MEMORY
RC_NO_ACTION_TAKEN
RC_FUNCTION_IN_ERROR
RC_COMMUNICATION_PROBLEM
RC_IO_PROBLEM
RC_WRITE_TO_DISK_ERROR
RC_LS_NOT_EXECUTABLE
RC_LS_FUNCTION_FAILED

See “Appendix A. The API return codes” on page 191 for more information
about these codes.

Usage
EhwClearIndex can be useful while you are trying out the system after installation
or if you decide to change the index type. The only way to undo this action is to
index all the documents again.

Note: While EhwClearIndex is running, the index is suspended and all other
running functions (such as search and index documents) of this index are
terminated. When EhwClearIndex has completed, the index is resumed.

If the index was suspended before the EhwClearIndex call, processing is terminated
and the return code RC_INDEX_SUSPENDED is set.

Example
This is an example of an EhwClearIndex function call:

ClearIndex

Chapter 5. Calling the API functions 43

/*---*/
/* issue an API function call to clear an index */
/*---*/
ulReturnCode =
EhwClearIndex (pSession, /* In -- session pointer */

ulIndexHandle, /* In -- index handle */
&ulDiagInfo); /* Out -- diagnosis info */

if (ulReturnCode != RC_DONE) /* check the API return code */
{

/* distinguish the code types */
/*--*/
/* no error code: */
/* case RC_NO_ACTION_TAKEN: index already empty */
/*--*/
/* function error: */
/* case RC_UNEXPECTED_ERROR: */
/* case RC_SERVER_BUSY: */
/* case RC_SERVER_CONNECTION_LOST: */
/* case RC_COMMUNICATION_PROBLEM: */
/* case RC_NOT_ENOUGH_MEMORY: */
/* case RC_FUNCTION_IN_ERROR: */
/* case RC_IO_PROBLEM: */
/* case RC_WRITE_TO_DISK_ERROR: */
/* handle the function error */
/* ... */
/* stop processing / return */
/*--*/
/* default: application error: */
/* handle the internal error */
/* ... */
/* stop processing / return */
/*--*/

} /* endif API return code > 0 */
/*---*/

ClearIndex

44 Text Search: Programming the Text Search Engine

EhwClearScheduledDocuments
This function empties the indexing queue of an information-retrieval index.

Input parameters
session pointer

Identifies the information-retrieval session. It is the pointer returned by
EhwStartSession when you start a session.

index handle
Identifies the information-retrieval index that the queue to be cleared belongs to.
It is the handle returned by EhwOpenIndex when the index is opened.

Output parameters
diagnosis information

There is no diagnosis information returned for this call.

return code
The following return code values can be returned with this call:

RC_DONE
RC_UNKNOWN_SESSION_POINTER
RC_INCORRECT_HANDLE
RC_REQUEST_IN_PROGRESS
RC_INCORRECT_AUTHENTICATION (Text Search Engine for AIX only)
RC_UNEXPECTED_ERROR
RC_SERVER_NOT_AVAILABLE
RC_SERVER_BUSY
RC_SERVER_CONNECTION_LOST
RC_CONFLICTING_TASK_RUNNING
RC_NOT_ENOUGH_MEMORY
RC_NO_ACTION_TAKEN
RC_FUNCTION_IN_ERROR
RC_COMMUNICATION_PROBLEM
RC_IO_PROBLEM
RC_WRITE_TO_DISK_ERROR
RC_LS_NOT_EXECUTABLE
RC_LS_FUNCTION_FAILED

See “Appendix A. The API return codes” on page 191 for more information
about these codes.

Usage
This function can be used to clear an indexing queue that has been filled with
documents for testing, or to clear documents from an indexing queue that have
unintentionally been placed there.

Example
This is an example of an EhwClearScheduledDocuments function call:

/*---*/
/* issue an API function call to clear the queue of an index */
/*---*/
ulReturnCode =
EhwClearScheduledDocuments

(pSession, /* In -- session pointer */
ulIndexHandle, /* In -- index handle */
&ulDiagInfo); /* Out -- diagnosis info */

ClearScheduledDocuments

Chapter 5. Calling the API functions 45

if (ulReturnCode != RC_DONE) /* check the API return code */
{

/* distinguish the code types*/
/*--*/
/* no error code: */
/* */
/* case RC_NO_ACTION_TAKEN: queue already empty */
/* ... */
/* case RC_CONFLICTING_TASK_RUNNING: */
/* active update | reorg. task */
/* ... */
/* continue with processing */
/*--*/
/* function error: */
/* case RC_UNEXPECTED_ERROR: */
/* case RC_SERVER_BUSY: */
/* case RC_SERVER_CONNECTION_LOST: */
/* case RC_COMMUNICATION_PROBLEM: */
/* case RC_NOT_ENOUGH_MEMORY: */
/* case RC_FUNCTION_IN_ERROR: */
/* case RC_IO_PROBLEM: */
/* case RC_WRITE_TO_DISK_ERROR: */
/* handle the function error */
/* ... */
/* stop processing / return */
/*--*/
/* default: application error: */
/* handle the internal error */
/* ... */
/* stop processing / return */
/*--*/
} /* endif API return code > 0 */
/*---*/

ClearScheduledDocuments

46 Text Search: Programming the Text Search Engine

EhwCloseDocument
This function closes a document opened by EhwOpenDocument, and releases the
storage allocated for document text and highlighting information.

Input parameters
session pointer

Identifies the information-retrieval session. It is the pointer returned by
EhwStartSession when you start a session.

document handle
Identifies the document handle. It is the handle returned by
EhwOpenDocument.

Output parameters
diagnosis information

There is no diagnosis information returned for this call.

return code
The following return code values can be returned with this call:

RC_DONE
RC_REQUEST_IN_PROGRESS
RC_LS_FUNCTION_FAILED
RC_UNKNOWN_SESSION_POINTER
RC_INCORRECT_HANDLE
RC_NOT_ENOUGH_MEMORY
RC_IO_PROBLEM
RC_UNEXPECTED_ERROR

See “Appendix A. The API return codes” on page 191 for more information
about these codes.

Usage
When you call the EhwCloseDocument function, the document handle becomes
obsolete, and all associated storage is released.

Example
This is an example of an EhwCloseDocument function call:

/*---*/
/* close the document */
/*---*/
ulReturnCode =
EhwCloseDocument (pSession, /* In -- session pointer */

ulDocHandle, /* In -- document handle */
pulDiagnosisInfo /* Out -- diagnosis info */

);

if (ulReturnCode != RC_DONE) /* check the API return code */
{

/* handle the function error */
} /* endif API call failed */
/*---*/

CloseDocument

Chapter 5. Calling the API functions 47

EhwCloseIndex
This function closes an information-retrieval index.

Input parameters
session pointer

Identifies the information-retrieval session. It is the pointer returned by
EhwStartSession when you start a session.

index handle
Identifies the information-retrieval index to be closed. It is the handle returned
by EhwOpenIndex when the index is opened. After closing the index, this
handle and all associated result handles become obsolete.

Output parameters
diagnosis information

There is no diagnosis information returned for this call.

return code
The following return code values can be returned with this call:

RC_DONE
RC_UNKNOWN_SESSION_POINTER
RC_INCORRECT_HANDLE
RC_MEMBER_OF_INDEX_GROUP
RC_REQUEST_IN_PROGRESS
RC_UNEXPECTED_ERROR
RC_SERVER_NOT_AVAILABLE
RC_SERVER_BUSY
RC_SERVER_CONNECTION_LOST
RC_COMMUNICATION_PROBLEM
RC_IO_PROBLEM

See “Appendix A. The API return codes” on page 191 for more information
about these codes.

Usage
When you call the EhwCloseIndex function, all search results for this
information-retrieval index or index group are deleted, all result handles become
obsolete, and all associated storage is released.

Example
This is an example of an EhwCloseIndex function call:

/*---*/
/* close the current information-retrieval index */
/*---*/
ulReturnCode =
EhwCloseIndex (pSession, /* In -- session pointer */

ulIndexHandle, /* In -- index handle */
&ulDiagnosisInfo); /* Out -- diagnosis info. */

if (ulReturnCode != RC_DONE) /* check the API return code */
{

/* handle the function error */
} /* endif API call failed */
/*---*/

CloseIndex

48 Text Search: Programming the Text Search Engine

EhwCreateDocumentModel
This function adds the definition of a new document model. The document model is
either added to the server instance related to the current session, or is added to a
section-enabled index opened previously and specified by means of an index
handle.

If the value of the input parameter index handle is 0L, the document model
definition is added to the document models available to the server instance.
Subsequent calls to EhwCreateIndex can then make use of the new document
model for section-enabled indexes. The name of the document model must be
unique for the server instance.

If the value of the input parameter index handle is a valid handle returned from a
previous call to EhwOpenIndex, the new model will be available only to the index
specified by this handle. This index must have property
XTPROP_SECTIONS_ENABLED. Future calls to EhwUpdate will take into account
the new document model. The name of the document model must be unique for the
index.

For Ngram indexes, the models used must not contain definitions of sections within
sections (nested sections).

Input parameters
session pointer

Identifies the information-retrieval session. It is the pointer returned by
EhwStartSession when you start a session.

index handle
Specifies the information-retrieval index to use. It is the handle returned by
EhwOpenIndex when the index is opened.

data stream length
The length, in bytes, of the data contained in the document model definition
datastream.

document model definition
The definition of the document model to be added, either to the server instance
or to a specific index. This parameter is supplied in datastream format. See
“Data stream syntax”.

Output parameters

diagnosis information
There is no diagnosis information returned for this call.

return code
The following return code values can be returned with this call:

RC_DONE
RC_UNKNOWN_SESSION_POINTER
RC_DATASTREAM_SYNTAX_ERROR
RC_INCORRECT_AUTHENTICATION (AIX only)
RC_UNEXPECTED_ERROR
RC_SERVER_NOT_AVAILABLE
RC_SERVER_BUSY
RC_SERVER_CONNECTION_LOST

CreateDocumentModel

Chapter 5. Calling the API functions 49

RC_NOT_ENOUGH_MEMORY
RC_COMMUNICATION_PROBLEM
RC_IO_PROBLEM
RC_WRITE_TO_DISK_ERROR
RC_CONFLICT_WITH_INDEX_TYPE
RC_DOCMOD_READ_PROBLEM
RC_DOCUMENT_MODEL_ALREADY_EXISTS
RC_SECTION_NAME_ALREADY_EXISTS
RC_SECTION_TAG_ALREADY_EXISTS
RC_INVALID_CHARACTER

See “Appendix A. The API return codes” on page 191 for more information
about these codes.

Data stream syntax

Document model definition

<< 07 CCSID A coded_cs_id ll DOCMOD A document_ model_name <

< 05 SECELST S ? Section entry 05 SECELST E <@

Section entry:

ll SECNAM A section_name ll SECTAG A section_tag

The data stream items are:

CCSID
Specifies the SAA Coded Character Set Identifier for the subsequent strings.
File IMOLANG.H defines symbolic names for the CCSIDs. The 2-byte binary value
must be specified in big-endian format.

DOCMOD
Specifies the name of the new document model. The name can contain the
characters A-Z, a-z, 0-9.

SECELST
Delimits the list of all section entries defined for the new document model.
Section names as well as section tags must be unique within the definition of a
new model. Valid characters are A-Z, a-z, 0-9. For sections within sections, the
character ’/’ is also allowed.

SECNAM
Name of a section to be defined for the new document model. This name can
be used as input for EhwSearch calls.

SECTAG
String denoting the tag to be used for section recognition. During processing of
EhwUpdate, the system looks for these tags in processed documents.

CreateDocumentModel

50 Text Search: Programming the Text Search Engine

Usage
Use this call to add a new model definition either to an existing index or to the
document models defined for the server instance.

Example
This is an example of an EhwCreateDocumentModel function call:
/*---*/
/* Create document model for an information-retrieval index or a server instance */
/*---*/
ulReturnCode =
EhwCreateDocumentModel(pSession, /* In -- session pointer */

ulIndexHandle, /* IN -- index_handle */
ulInDataLength, /* In -- data stream length */
pInDataStream, /* In -- document model info */
&ulDiagnosisInfo); /* Out -- diagnosis info. */

if (ulReturnCode != RC_DONE) /* check the API return code */
{

/* handle the function error */
} /* endif API call failed */
/*---*/

CreateDocumentModel

Chapter 5. Calling the API functions 51

EhwCreateIndex
This function creates an index on the Text Search Engine server of the current
session.

Input parameters
session pointer

Identifies the information-retrieval session. It is the pointer returned by
EhwStartSession when you start a session.

data stream length
The length, in bytes, of the data contained in the index information parameter.

index information
Specifies the information-retrieval index creation information. This parameter is
supplied in a data stream format (see “Data stream syntax” on page 53).

Output parameters
diagnosis information

There is no diagnosis information returned for this call.

return code
The following return code values can be returned with this call:

RC_DONE
RC_UNKNOWN_SESSION_POINTER
RC_UNKNOWN_INDEX_TYPE
RC_INCORRECT_INDEX_NAME
RC_INCORRECT_LS_EXECUTABLES
RC_INCORRECT_LIBRARY_ID
RC_INCORRECT_LOCATION
RC_DATASTREAM_SYNTAX_ERROR
RC_REQUEST_IN_PROGRESS
RC_INCORRECT_AUTHENTICATION (Text Search Engine for AIX only)
RC_UNEXPECTED_ERROR
RC_INDEX_ALREADY_EXISTS
RC_MAX_NUMBER_OF_INDEXES
RC_LOCATION_IN_USE
RC_SERVER_NOT_AVAILABLE
RC_SERVER_BUSY
RC_SERVER_CONNECTION_LOST
RC_NOT_ENOUGH_MEMORY
RC_COMMUNICATION_PROBLEM
RC_IO_PROBLEM
RC_WRITE_TO_DISK_ERROR
RC_CCS_NOT_SUPPORTED
RC_CONFLICT_WITH_INDEX_TYPE
RC_DOCMOD_READ_PROBLEM
RC_UNKNOWN_DOCUMENT_MODEL_NAME

See “Appendix A. The API return codes” on page 191 for more information
about these codes.

CreateIndex

52 Text Search: Programming the Text Search Engine

Data stream syntax

Index information

<< 05 IRX S ll XNAM A index_name 06 XTYP A index_type <

<
07 XCCSID A coded_char_set_id 06 XTADD A additional_feature

<

<
06 XTPROP A index_property Document models

<

< ll LSCE A library_services_client_executables <

< ll LSSE A library_services_server_executables <

<
ll LIBID A library_identifier

ll XLOC A index_location <

< ll WLOC A work_location <

<
07 CCSID A coded_char_set_id ll XTTL A index_title

<

<
07 CCSID A coded_char_set_id ll XDESC A index_desc

05 IRX E <@

Document models:

07 CCSID A coded_char_set_id <

< ?05 MODLST S ll DOCMOD A model_name 05 MODLST E

The data stream items are:

IRX
Delimits the information supplied for the index.

XNAM
Specifies the name of the index to be created. The name can contain the
characters A-Z, 0-9; lowercase characters are not allowed. Index names must
be unique, and must not be longer than 8 characters.

XTYP
Specifies the type of this index. The index_type is a 1-byte code:

CreateIndex

Chapter 5. Calling the API functions 53

XTYP_LINGUISTIC
Specifies a linguistic index; that is, words are indexed in their base (lemma)
forms; for example, mouse and mice are both indexed as mouse.

XTYP_PRECISE
Specifies a precise index; that is, words are indexed in the grammatical
form in which they occur in the original text; for example, mice is indexed as
mice.

XTYP_GTR

No other index type can support documents or queries in DBCS CCSIDs.

If DBCS documents contain SBCS text, the boundary between an SBCS
and a DBCS word should contain a blank, not just a carriage return, to
avoid unwanted concatenation of the two words.

Take, for example, a document that contains the following text:
Version
number

If either the last letter of Version, or the first letter of number were a DBCS
character, then the text could be included in the index as the single word
Versionnumber.

Now imagine a document containing the same text, but where there is
either a blank character before the new line, or the new line begins with a
blank character as in
Version
number

Here, word separation is successful, and the index contains the two words
Version and number.

XCCSID
Specifies the CCSID for an Ngram index.

Ngram indexes can be created using the following CCSIDs:

ASCII 00819 Latin-1

00850 Latin-1

00932 Combined Japanese

00942 Combined Japanese

00943 Combined Japanese

00949 Combined Korean

00950 Combined Traditional Chinese

00970 Combined Korean

01252 Latin-1

01363 Combined Korean

01381 Combined Simplified Chinese

01383 Combined Simplified Chinese

05039 Combined Japanese

EBCDIC 00500 Latin-1

00933 Korean

CreateIndex

54 Text Search: Programming the Text Search Engine

00937 Traditional Chinese

01388 Simplified Chinese

05026 Japanese Katakana

05035 Japanese Latin

XTADD
Requests additional feature for the selected index type.

XTADD_CASE_ENABLED
Enables case-sensitive searches on this index, for all CCSID’s supported by
Ngram indexes. This is valid only for Ngram indexes.

XTADD_NORMALIZED
Valid only for index type XTYP_PRECISE. This index type is case
insensitive. Exceptions to this are words in all uppercase, such as UK and
US, which are indexed in uppercase.

XTPROP
Specifies that the index has a non-default property.

XTPROP_SECTIONS_ENABLED

Enables the index to keep information about the document structure, such
as its title or author sections. Default for a section’s type is full text.

Information on sections is extracted and stored at indexing time and can be
used for later query restriction.

The description of EhwSearch function shows how to call for searches
restricted to one or more sections. See “EhwSearch” on page 125.

Indexes created with this extension should use a default document format
that enables structure recognition inside a document.

CCSID
Specifies the CCSID of the DOCMOD document model name(s). Valid only for
indexes that are created using the XTPROP_SECTIONS_ENABLED option. For these
indexes, a CCSID must be specified.

File IMOLANG.H defines symbolic names for the CCSIDs. The 2-byte binary value
must be specified in big-endian format.

MODLST
Delimits a document model name or a list of document model names. Valid only
for indexes that are created using the XTPROP_SECTIONS_ENABLED option. For
these indexes, there must be at least one document model name, and its name
must match a model that has been defined for the server instance. See
“EhwCreateDocumentModel” on page 49.

The list must contain only the names of models defined for the server instance.

For Ngram indexes, the models must not contain sections within sections
(nested sections).

DOCMOD
Document model name specifying which document model or models are to be
used by the new index when adding documents to it.

Valid characters are A-Z, a-z, 0-9.

CreateIndex

Chapter 5. Calling the API functions 55

LSCE
Specifies the name of the client library services executable that is used with this
index. The name can contain the characters A-Z, a-z, 0-9.

The client library service provided with Text Search Engine to support all file
systems is called IMOLSCFS.

LSSE
Specifies the name of the server library services executable that must be used
with this index. The name can contain the characters A-Z, a-z, 0-9.

The server library service to support the file system is called IMOLSSFS.

LIBID
Specifies the symbolic library identifier with which the information-retrieval index
is associated.

If provided, this item has to be specified as an input parameter when the library
services function LIB_init is called.

XLOC
Specifies the location of the index data.

WLOC
Specifies the location of the work data.

XTTL
Specifies the title of the information-retrieval index.

XDESC
Specifies the description of the information-retrieval index.

CCSID
Specifies the CCSID of the title and title description. A CCSID is mandatory if a
title or title description exists. A list of valid CCSIDs is contained in IMOLANG.H.

Usage
Index names must be unique on a given server.

The index location and the work location specified with the EhwCreateIndex
function call are reserved for this information-retrieval index only.

Note that directories for work location and index location must be unique for one
index instance.

An Ngram index is created for use with one CCSID only. Requests like search or
update fail if they use a CCSID different to the one it was created for.

Example
This is an example of an EhwCreateIndex function call:

/*---*/
/* create a information-retrieval index */
/*---*/
ulReturnCode =
EhwCreateIndex (pSession, /* In -- session pointer */

ulDataLength, /* In -- data stream length */
pDataStream, /* In -- index information */
&ulDiagnosisInfo); /* Out -- diagnosis info. */

if (ulReturnCode != RC_DONE) /* check the API return code */
{

CreateIndex

56 Text Search: Programming the Text Search Engine

/* handle the function error */
} /* endif API call failed */
/*---*/

The area pointed to by pDataStream could contain the following data stream, and
ulDataLength would have a value of 108.

Symbolic notation Hexadecimal representation

05 IRX S 0005 0032 E2
12 XNAM A INDEX07 000C 003C C1 494E4445583037
06 XTYP A XTYP_PRECISE 0006 003E C1 03
13 LSCE A IMOLSCFS 000D 003F C1 4548534C53434653
13 LSSE A IMOLSSFS 000D 0040 C1 4548534C53534653
27 XLOC A \\SHL1293\ 001B 0043 C1 5C5C53484C...

INDEX07\DATA
27 WLOC A \\SHL1293\ 001B 0044 C1 5C5C53484C...

INDEX07\WORK
05 IRX E 0005 0032 C5

CreateIndex

Chapter 5. Calling the API functions 57

EhwCreateIndexGroup
This function defines a group of indexes temporarily belonging together for the
duration of a session. On this group of indexes, a cross-index search can be
performed by using EhwSearch. The indexes must all be located on the same Text
Search Engine server.

The types of the indexes in the group must be compatible; that is, the indexes must
be one of the following:
v All precise and same extension
v All linguistic
v All Ngram with the same CCSID

If some of the indexes within a group are enhanced with additional features, then
the query for a cross-index search must use the minimum subset of query keywords
compatible with the index having the least features. For example, an index group
containing indexes of type XTYP_LINGUISTIC and XTYP_LINGUISTIC with an
enhancement via the XTPROP_SECTIONS_ENABLED feature are treated as if all
indexes were of type XTYP_LINGUISTIC without any enhancements.

Input parameters
session pointer

Identifies the information-retrieval session. It is the pointer returned by
EhwStartSession when you start a session.

data stream length
The length, in bytes, of the data contained in the index names parameter.

index names
Specifies the names of information-retrieval indexes already opened by an
EhwOpenIndex call, to be grouped for the purpose of a cross-index search. The
index names are supplied in a data stream format (see “Data stream syntax” on
page 59).

At least two index names must be supplied.

Output parameters
index group handle

Identifies the information-retrieval index group and its status. The index group
handle is used as input parameter for a search across multiple indexes.

diagnosis information
For the following return codes, the diagnosis information returned for this call
contains the offset within the input data stream to the first index name in error.

RC_DATASTREAM_SYNTAX_ERROR
RC_CONFLICT_WITH_INDEX_TYPE

return code
The following return code values can be returned with this call:

RC_DONE
RC_UNKNOWN_SESSION_POINTER
RC_DATASTREAM_SYNTAX_ERROR
RC_NOT_ENOUGH_MEMORY
RC_UNEXPECTED_ERROR

See “Appendix A. The API return codes” on page 191 for more information
about these codes.

CreateIndexGroup

58 Text Search: Programming the Text Search Engine

Data stream syntax

Index names

<< ? ll XNAM A index_name <@

The data stream item is:

XNAM
Specifies the name of an index that is to become a member of the group.

Usage
This function creates an index group which, after successful completion of the call,
is represented by the index group handle. This handle can then be used to start a
search across all the indexes belonging to the group. After deletion of an index
group, all result handles and result list handles become obsolete. An index
belonging to a group cannot be closed while its group exists.

Example
This is an example of an EhwCreateIndexGroup function call:

/*---*/
/* call API function EhwCreateIndexGroup */
/*---*/

ulReturnCode =
EhwCreateIndexGroup

(pSession, /* In -- session pointer */
&ulDataLength, /* In -- data stream length*/
&pDataStream, /* In -- index names list */
ulIxGrpHandle, /* Out -- group handle */
&ulDiagnosisInfo);/* Out -- diagnosis info. */

/* check the API return code*/
if (ulReturnCode != RC_DONE)
{

/* handle the function error */
} /* endif API call failed */

/*---*/
/* get the returned index group handle */
/*---*/

The area pointed to by pDataStream could contain the following data stream, and
ulDataLength would have a value of 26.

Symbolic notation Hexadecimal representation

13 XNAM A EHWINDEX 000D 003C C1 454857494E444558
13 XNAM A EHWINDX2 000D 003C C1 454857494E445832

CreateIndexGroup

Chapter 5. Calling the API functions 59

EhwCreateResultView
This function creates a list of descriptive information for all documents of a specified
search result list.

Input parameters
session pointer

Identifies the information-retrieval session. It is the pointer returned by
EhwStartSession when you start a session.

result handle
Identifies the search result to be accessed. It is the handle returned by an
EhwSearch call.

Output parameters
result list handle

A unique handle for the result list that includes the documents of the input result
object.

result list size
The size of the result list.

diagnosis information
There is no diagnosis information returned for this call.

return code
The following return code values can be returned with this call:

RC_DONE
RC_EMPTY_LIST
RC_UNKNOWN_SESSION_POINTER
RC_INCORRECT_HANDLE
RC_UNEXPECTED_ERROR
RC_SERVER_NOT_AVAILABLE
RC_SERVER_BUSY
RC_SERVER_CONNECTION_LOST
RC_NOT_ENOUGH_MEMORY
RC_RESULT_VIEW_EXISTS

See “Appendix A. The API return codes” on page 191 for more information
about these codes.

Usage
The result list is used by the functions EhwSelectResultView, EhwSort,
EhwGetResultView, and EhwDeleteResultView.

An EhwCreateResultView call is made at most once for each result object. It
creates the result list including all documents and their related information. When
the result object is enhanced, for example through an EhwRank call, then the
enhancement is valid for the result list created through EhwCreateResultView as
well, regardless of the order of execution.

Example
This is an example of an EhwCreateResultView function call:

/*--*/
/* call API function EhwCreateResultView */
/*--*/

CreateResultView

60 Text Search: Programming the Text Search Engine

do
{

ulReturnCode =
EhwCreateResultView (pSession, /* In -- session pointer */

ulResultHandle, /* In -- result handle */
&ulResViewHandle, /* Out -- result view handle */
&ulResViewSize, /* Out -- size of result view */
&ulDiagnosisInfo); /* Out -- diagnosis info. */

/* check the API return code */
if (ulReturnCode != RC_DONE)
{

/* handle the function error */
} /* endif API call failed */

/*---*/
/* parse the result view data stream ... */
/*---*/

} while (ulReturnCode == RC_CONTINUATION_MODE_ENTERED)
/*--*/

CreateResultView

Chapter 5. Calling the API functions 61

EhwDeleteDocumentModel
This function removes the specified document model from the server instance. The
deleted document model is no longer be available for calls to EhwCreateIndex. If
the document model is used by an existing index, this index is not affected by the
deletion. You cannot delete a model defined for an existing index.

Input parameters
session pointer

Identifies the information-retrieval session. It is the pointer returned by
EhwStartSession when you start a session.

data stream length
The length, in bytes, of the data contained in the document model definition
datastream.

document model name
The name of the document model to be deleted from the server instance. This
parameter is supplied in datastream format. See “Data stream syntax”.

Output parameters
diagnosis information

There is no diagnosis information returned for this call.

return code
The following return code values can be returned with this call:

RC_DONE
RC_UNKNOWN_SESSION_POINTER
RC_DATASTREAM_SYNTAX_ERROR
RC_UNEXPECTED_ERROR
RC_SERVER_NOT_AVAILABLE
RC_SERVER_BUSY
RC_SERVER_CONNECTION_LOST
RC_NOT_ENOUGH_MEMORY
RC_COMMUNICATION_PROBLEM
RC_IO_PROBLEM
RC_WRITE_TO_DISK_ERROR
RC_UNKNOWN_DOCUMENT_MODEL_NAME

See “Appendix A. The API return codes” on page 191 for more information
about these codes.

Data stream syntax

Delete document model

<< 07 CCSID A coded_cs_id ll DOCMOD A document_ model_name <@

The data stream items are:

CCSID
Specifies the SAA Coded Character Set Identifier for the subsequent strings.
File IMOLANG.H defines symbolic names for the CCSIDs. The 2-byte binary value
must be specified in big-endian format.

DeleteDocumentModel

62 Text Search: Programming the Text Search Engine

DOCMOD
Specifies the name of the document model to be removed from the server
instance. The name can contain the characters A-Z, a-z, 0-9.

Usage
Use this call to delete a document model from the document models defined for the
server instance defined by the session pointer.

Example
This is an example of an EhwDeleteDocumentModel function call:
/*--*/
/* Delete document model from a server instance */
/*--*/
ulReturnCode =
EhwDeleteDocumentModel (pSession, /* In -- session pointer */

ulDataLength, /* In -- data stream length */
pDataStream, /* In -- document model name*/
&ulDiagnosisInfo); /* Out -- diagnosis info */

if (ulReturnCode != RC_DONE) /* check the API return code */
{ /* handle the function error */
} /* endif API call failed */
/*--*/

DeleteDocumentModel

Chapter 5. Calling the API functions 63

EhwDeleteIndex
This function deletes an index on the Text Search Engine server.

Input parameters
session pointer

Identifies the information-retrieval session. It is the pointer returned by
EhwStartSession when you start a session.

data stream length
The length, in bytes, of the data contained in the index name parameter.

index name
Specifies the information-retrieval index to be deleted. This parameter is
supplied in a data stream format (see “Data stream syntax”).

Output parameters
diagnosis information

There is no diagnosis information returned for this call.

return code
The following return code values can be returned with this call:

RC_DONE
RC_UNKNOWN_SESSION_POINTER
RC_UNKNOWN_INDEX_NAME
RC_DATASTREAM_SYNTAX_ERROR
RC_REQUEST_IN_PROGRESS
RC_INCORRECT_AUTHENTICATION (Text Search Engine for AIX only)
RC_UNEXPECTED_ERROR
RC_SERVER_NOT_AVAILABLE
RC_SERVER_BUSY
RC_SERVER_CONNECTION_LOST
RC_SERVER_IN_ERROR
RC_INDEX_NOT_ACCESSIBLE
RC_NOT_ENOUGH_MEMORY
RC_COMMUNICATION_PROBLEM
RC_IO_PROBLEM
RC_WRITE_TO_DISK_ERROR

See “Appendix A. The API return codes” on page 191 for more information
about these codes.

Data stream syntax

Index name

<< ll XNAM A index_name <@

The data stream item is:

XNAM
Specifies the name of the index to be deleted. It must be one of the names
returned by the EhwListIndexes function for the current session.

DeleteIndex

64 Text Search: Programming the Text Search Engine

Usage
EhwDeleteIndex not only clears the contents of an index, but also deletes the index
itself. When you call the EhwDeleteIndex function, all data sets of the index location
and the work location that were specified with EhwCreateIndex when you created
the index, are deleted. If this index is open for the current session, it first has to be
closed before it can be deleted. When the search service is integrated in a library,
such as IBM Content Manager, you must first call EhwClearIndex to keep the library
server information synchronized with the content of the document index.

Example
This is an example of an EhwDeleteIndex function call:

/*---*/
/* call API function to delete the information-retrieval index */
/*---*/
ulReturnCode =
EhwDeleteIndex (pSession, /* In -- session pointer */

ulDataLength, /* In -- data stream length */
pDataStream, /* In -- index name */
&ulDiagnosisInfo); /* Out -- diagnosis info. */

if (ulReturnCode != RC_DONE) /* check the API return code */
{

/* handle the function error */
} /* endif API call failed */
/*---*/

The area pointed to by pDataStream could contain the following data stream, and
ulDataLength would have a value of 13.

Symbolic notation Hexadecimal representation

13 XNAM A EHWINDEX 000D 003C C1 454857494E444558

DeleteIndex

Chapter 5. Calling the API functions 65

EhwDeleteIndexGroup
This function deletes the information-retrieval index group created by an
EhwCreateIndexGroup call. When the group is deleted, all the data created after
the generation of the index group handle, and associated with it, is also deleted.

Input parameters
session pointer

Identifies the information-retrieval session. It is the pointer returned by
EhwStartSession when you start a session.

index group handle
Identifies the index group to be deleted. It is the handle returned by an
EhwCreateIndexGroup call.

Output parameters
diagnosis information

There is no diagnosis information returned for this call.

return code
The following return code values can be returned with this call:

RC_DONE
RC_UNKNOWN_SESSION_POINTER
RC_INCORRECT_HANDLE
RC_UNEXPECTED_ERROR

See “Appendix A. The API return codes” on page 191 for more information
about these codes.

Example
This is an example of an EhwDeleteIndexGroup function call:

/*---*/
/* call API function EhwDeleteIndexGroup */
/*---*/
do
{

ulReturnCode =
EhwDeleteIndexGroup

(pSession, /* In -- session pointer */
ulIxGrpHandle, /* In -- group handle */
&ulDiagnosisInfo);/* Out -- diagnosis info. */

/* check the API return code*/
if (ulReturnCode != RC_DONE)
{

/* handle the function error */
} /* endif API call failed */

/*--*/
/* This index group and its results are deleted now */
/*--*/

DeleteIndexGroup

66 Text Search: Programming the Text Search Engine

EhwDeleteResult
This function releases all information associated with a specified search result, or
deletes all results associated with an index or index group. However, if an index
handle is an input parameter to EhwDeleteResult, and the associated index is also
a member of one or more index groups, related search results belonging to these
index groups are not deleted.

Input parameters
session pointer

Identifies the information-retrieval session. It is the pointer returned by
EhwStartSession when you start a session.

result handle, index handle, or index group handle
Identifies the particular search result to be deleted, or the information-retrieval
index whose results are all to be deleted.

v result handle is the handle returned by an EhwSearch call. Specify the result
handle to delete a particular search result. After deleting a search result, its
handle becomes obsolete. You can no longer call the EhwRank function for
any document of this result. Also, working with the corresponding search
result list is no longer possible, because any deletion of a search result
implicitly deletes this search result list.

v index handle is the handle returned by EhwOpenIndex when the index is
opened. Specify the index handle to delete all search results. After deleting
all search results of a given index, all result handles associated with this
index become obsolete.

v index group handle is the handle returned by EhwCreateIndexGroup when
the group was created. Specify the index group handle to delete all group
related search results. After deleting all search results of the group, all result
handles associated with this index group become obsolete.

Output parameters
diagnosis information

There is no diagnosis information returned for this call.

return code
The following return code values can be returned with this call:

RC_DONE
RC_UNKNOWN_SESSION_POINTER
RC_INCORRECT_HANDLE
RC_REQUEST_IN_PROGRESS
RC_UNEXPECTED_ERROR
RC_SERVER_NOT_AVAILABLE
RC_SERVER_BUSY
RC_SERVER_CONNECTION_LOST
RC_COMMUNICATION_PROBLEM
RC_IO_PROBLEM

See “Appendix A. The API return codes” on page 191 for more information
about these codes.

Usage
Because each search result can occupy a large amount of storage space, you
should delete any results that you no longer need.

DeleteResult

Chapter 5. Calling the API functions 67

Example
This is an example of an EhwDeleteResult function call:

/*---*/
/* issue an API function call to delete a search result */
/*---*/
ulReturnCode =
EhwDeleteResult (pSession, /* In -- session pointer */

ulResultHandle, /* In -- result handle */
&ulDiagnosisInfo); /* Out -- diagnosis info */

if (ulReturnCode != RC_DONE) /* check the API return code */
{

/* handle the function error */
} /* endif API call failed */
/*---*/

DeleteResult

68 Text Search: Programming the Text Search Engine

EhwDeleteResultView
This function releases the information associated with the search result list specified
by an input handle.

Input parameters
session pointer

Identifies the information-retrieval session. It is the pointer returned by
EhwStartSession when you start a session.

result list handle
Identifies the particular search result list to be deleted. It is the handle returned
by an EhwSelectResultView or an EhwCreateResultView call. When you delete
a search result list, its handle becomes obsolete.

Output parameters
diagnosis information

There is no diagnosis information returned for this call.

return code
The following return code values can be returned with this call:

RC_DONE
RC_UNKNOWN_SESSION_POINTER
RC_INCORRECT_HANDLE
RC_SERVER_CONNECTION_LOST
RC_UNEXPECTED_ERROR
RC_SERVER_NOT_AVAILABLE
RC_SERVER_BUSY
RC_COMMUNICATION_PROBLEM
RC_IO_PROBLEM

See “Appendix A. The API return codes” on page 191 for more information
about these codes.

Example
This is an example of an EhwDeleteResultView function call:

/*---*/
/* issue an API function call to delete the current search result */
/*---*/
ulReturnCode =
EhwDeleteResultView (pSession, /* In -- session pointer */

ulResViewHandle, /* In -- result view handle */
&ulDiagnosisInfo); /* Out -- diagnosis info */

if (ulReturnCode != RC_DONE) /* check the API return code */
{

/* handle the function error */
} /* endif API call failed */
/*---*/

DeleteResultView

Chapter 5. Calling the API functions 69

EhwDelIndexingMsgs
This function removes all indexing messages that were listed by an
EhwGetIndexingMsgs call.

Input parameters
session pointer

Identifies the information-retrieval session. It is the pointer returned by
EhwStartSession when you start a session.

index handle
Identifies the information-retrieval index for which indexing messages are to be
removed. It is the handle returned by EhwOpenIndex when the index is opened.

Output parameters
return code

The following return code values can be returned with this call:
RC_DONE
RC_UNKNOWN_SESSION_POINTER
RC_INCORRECT_HANDLE
RC_REQUEST_IN_PROGRESS
RC_INCORRECT_AUTHENTICATION (Text Search Engine for AIX only)
RC_UNEXPECTED_ERROR
RC_SERVER_NOT_AVAILABLE
RC_SERVER_BUSY
RC_SERVER_CONNECTION_LOST
RC_NOT_ENOUGH_MEMORY
RC_COMMUNICATION_PROBLEM
RC_IO_PROBLEM
RC_WRITE_TO_DISK_ERROR

See “Appendix A. The API return codes” on page 191 for more information
about these codes.

Usage
Use the EhwDelIndexingMsgs call to remove all of the indexing messages.

Each time you retrieve messages, it is advisable to delete them to avoid the list of
indexing messages becoming too large. This also helps you to keep track of the
indexing messages that you actually retrieved.

Example
This is an example of an EhwDelIndexingMsgs function call:

/*--*/
/* function call to delete indexing messages */
/*--*/
ulReturnCode =
EhwDelIndexingMsgs(pSession, /* In -- session pointer */

ulIndexHdl, /* In -- index_handle */
&ulDiagInfo); /* Out -- diagnosis info */

if (ulReturnCode != RC_DONE) /* check the API return code */
{

/* handle the function error */
} /* endif API call failed */

DelIndexingMsgs

70 Text Search: Programming the Text Search Engine

EhwEndSession
This function ends the information-retrieval session established by calling
EhwStartSession, and releases the storage allocated during the session.

Input parameters
session pointer

Identifies the information-retrieval session. It is the pointer returned by
EhwStartSession when you start a session. After ending the session, this
pointer and all associated handles become obsolete.

Output parameters
diagnosis information

There is no diagnosis information returned for this call.

return code
The following return code values can be returned with this call:

RC_DONE
RC_UNKNOWN_SESSION_POINTER
RC_REQUEST_IN_PROGRESS
RC_UNEXPECTED_ERROR

See “Appendix A. The API return codes” on page 191 for more information
about these codes.

Usage
EhwEndSession should always be called before ending the application, except
when the previous EhwStartSession call failed.

Example
This is an example of an EhwEndSession function call:

/*---*/
/* end the session */
/*---*/
ulReturnCode =
EhwEndSession (pSession, /* In -- session pointer */

&ulDiagnosisInfo); /* Out -- diagnosis info */

if (ulReturnCode != RC_DONE) /* check the API return code */
{

/* handle the function error */
} /* endif API call failed */
/*---*/

EndSession

Chapter 5. Calling the API functions 71

EhwGetDocumentModel
This function returns information on the definition of a document model.

The target of this call can be either the server instance related to the current
session or a valid handle returned from any previous call to EhwOpenIndex on any
section-enabled index.

If detailed information on the document model is to be retrieved for the server
instance related to the current session, the value of the index handle must be 0L. If
detailed information is to be retrieved for a section-enabled index, the index handle
must be that of a previously opened index.

Input parameters
session pointer

Identifies the information-retrieval session. It is the pointer returned by
EhwStartSession when you start a session.

index handle
Specifies the information-retrieval index to use. It is the handle returned by
EhwOpenIndex when the index is opened. If model information is requested
from a server instance, this input parameter must be 0L.

data stream length
The length, in bytes, of the data contained in the document model definition
datastream.

document model name
The name of the document model for which information is requested. This
parameter is supplied in datastream format. See “Data stream syntax”.

Data stream syntax

Document model name

<< 07 CCSID A coded_cs_id ll DOCMOD A document_model_name <@

The data stream items are:

CCSID
Specifies the SAA Coded Character Set Identifier for the subsequent strings.
File IMOLANG.H defines symbolic names for the CCSIDs. The 2-byte binary value
must be specified in big-endian format.

DOCMOD
Specifies the name of the document model for which information is requested.
The name can contain the characters A-Z, a-z, 0-9.

Output parameters
data stream length

The length, in bytes, of the data contained in the document model information
datastream.

document model information
A list of all sections and their properties which are defined for the model

GetDocumentModel

72 Text Search: Programming the Text Search Engine

specified by the document model name. The output is returned in datastream
format. See “Data stream syntax”.

diagnosis information
There is no diagnosis information returned for this call.

return code
The following return code values can be returned with this call:

RC_DONE
RC_UNKNOWN_SESSION_POINTER
RC_DATASTREAM_SYNTAX_ERROR
RC_INCORRECT_AUTHENTICATION (AIX only)
RC_UNEXPECTED_ERROR
RC_SERVER_NOT_AVAILABLE
RC_SERVER_BUSY
RC_SERVER_CONNECTION_LOST
RC_NOT_ENOUGH_MEMORY
RC_COMMUNICATION_PROBLEM
RC_IO_PROBLEM
RC_WRITE_TO_DISK_ERROR
RC_CONFLICT_WITH_INDEX_TYPE
RC_DOCMOD_READ_PROBLEM
RC_CONTINUATION_MODE_ENTERED

See “Appendix A. The API return codes” on page 191 for more information
about these codes.

Data stream syntax

Document model information

<< 07 CCSID A coded_cs_id 05 SECELST S ? Section entry <

< 05 SECELST E <@

Section entry:

ll SECNAM A section_name ll SECTAG A section_tag

The data stream items are:

CCSID
Specifies the SAA Coded Character Set Identifier for the subsequent strings.
File IMOLANG.H defines symbolic names for the CCSIDs. The 2-byte binary value
must be specified in big-endian format.

Depending on operating system, the values are EHWCCSID_00819 or
EHWCCSID_00500.

SECELST
Delimits the list of all section entries defined for the document model. The list
contains all sections of the document model specified by the document model
name in the input datastream. The document model must have been defined for

GetDocumentModel

Chapter 5. Calling the API functions 73

the server instance or the index specified by the index handle (if the value of
the index handle was given as 0L, or valid value as returned from
EhwOpenIndex call respectively).

SECNAM
The name of a section as defined for the document model. This name can be
used as input for EhwSearch calls.

SECTAG
A string denoting the tag to be used for section recognition. During processing
of EhwUpdate, the parsers used for structured documents look for these tags.

Usage
Use this call to get information about the definition of a document model. If queries
fail with RC_UNKNOWN_SECTION, use this call providing an index handle and
document model name which were used for the query to get an overview of the
model definition used for the index. For information on which default model is used
for a specific index, see “EhwGetIndexingRules” on page 84.

Example
This is an example of an EhwGetDocumentModel function call:
/*---*/
/* Get information on document model used for an information-retrieval index */
/*---*/
ulReturnCode =
EhwGetDocumentModel (pSession, /* In -- session pointer */

ulIndexHandle, /* IN -- index_handle */
ulInDataLength, /* In -- data stream length */
pInDataStream, /* In -- index information */
&ulOutDataLength, /* Out -- data stream length */
&pOutDataStream, /* Out -- model information */
&ulDiagnosisInfo); /* Out -- diagnosis info. */

if (ulReturnCode != RC_DONE) /* check the API return code */
{

/* handle the function error */
} /* endif API call failed */
/*---*/

GetDocumentModel

74 Text Search: Programming the Text Search Engine

EhwGetIndexFunctionStatus
This function provides status information about the Text Search Engine functions
search (EhwSearch) scheduling (EhwScheduleDocument), indexing
(EhwUpdateIndex), and index merge (EhwReorgIndex). The output information
indicates whether a function is enabled, stopped, or running. This information is
available when an index is opened.

Input parameters
session pointer

Identifies the information-retrieval session. It is the pointer returned by
EhwStartSession when you start a session.

index handle
Identifies the information-retrieval index for which function status information is
to be provided. It is the handle returned by EhwOpenIndex when the index is
opened.

function identifier
Identifies the Text Search Engine function for which status information is to be
provided.

FCT_SEARCH_INDEX
Search function

FCT_SCHEDULE_DOCUMENTS
Schedule documents function

FCT_INDEX_DOCUMENTS
Index documents function

FCT_MERGE_INDEX
Reorganize index function.

Output parameters
data stream length

The length, in bytes, of the data contained in the function information
parameter.

function information
Lists status information for the requested function. The information can contain
time stamps of function events or error situations. This parameter is returned in
a data stream format (see “Data stream syntax” on page 76).

diagnosis information
There is no diagnosis information returned for this call.

return code
The following return code values can be returned with this call:

RC_DONE
RC_UNKNOWN_SESSION_POINTER
RC_INCORRECT_HANDLE
RC_SERVER_CONNECTION_LOST
RC_REQUEST_IN_PROGRESS
RC_NOT_ENOUGH_MEMORY
RC_INDEX_SUSPENDED
RC_MAX_NUMBER_OF_INDEXES
RC_COMMUNICATION_PROBLEM
RC_UNEXPECTED_ERROR

GetIndexFunctionStatus

Chapter 5. Calling the API functions 75

See “Appendix A. The API return codes” on page 191 for more information
about these codes.

Data stream syntax
At least one of the items in the data stream must be present. “Usage” describes
which items (for which function and for which function status) are contained in the
data stream.

Function information

<< 05 TENBL A
05 TDSBL A 05 TSTOP A 09 REASON A error_code

<

<
13 TLSTART A Time_function’s_last_start

<

<
13 TLEND A Time_function’s_last_end

<

<
13 TESTART A Time_function_execution_start

<@

The data stream items are:

TENBL
Specifies the function enabled identifier

TDSBL
Specifies the function was disabled by an administrator

TSTOP
Specifies the function was stopped by the Text Search Engine server due to
an internal error

REASON
Specifies the reason why a document could not be indexed, or why a
problem occurred when a document was indexed. error code is a 4-byte
unsigned long. For error codes and their description, see “Appendix B. Error
codes returned by GetIndexingMsgs and GetIndexFunctionStatus” on
page 207.

TLSTART
Specifies the time when the function was started last

TLEND
Specifies the time when the function ended last

TESTART
Specifies the time when the function started execution

Usage
Issue the EhwGetIndexFunctionStatus call to get the status of the following Text
Search Engine functions:

Search (does not return TLSTART, TLEND, or TESTART)
Schedule documents

GetIndexFunctionStatus

76 Text Search: Programming the Text Search Engine

Index documents
Merge document index.

A data stream containing the status of these functions is returned. For the structure
of the binary timestamp (8 bytes) returned by the function, see the file IMOLSDEF.H
provided with Text Search Engine.

The items TLSTART, TLEND, and TESTART are not returned by the Search
fucntion.

For the other functions, TLSTART and TLEND are returned only if the function for
that index has already run, and TESTART is returned only when the function is
actually running.

If TSTOP is returned, the function is faulty. The reason code can help to determine
the error. Use EhwSetIndexFunctionStatus to reset the error condition.

Example
This is an example of an EhwGetIndexFunctionStatus call with function ID
FCT_INDEX_DOCUMENTS.

/*---*/
/* invoke API function to obtain the function status */
/*---*/
ulReturnCode = EhwGetIndexFunctionStatus

(pSession, /* In -- session pointer */
ulIndexHdl, /* In -- index_handle */
ulFunctionId, /* In -- function ID */
&ulDataLength, /* Out -- data stream length */
&pStream, /* Out -- admin. function info */
&ulDiagInfo); /* Out -- diagnosis info */

if (ulReturnCode != RC_DONE) /* check the API return code*/
{

/* handle the function error*/
} /* endif API call failed */
/*---*/

After completion of the function call, the area pointed to by pDataStream could
contain the following data stream, and ulDataLength would then have a value of 44.

Symbolic notation Hexadecimal representation

05 TENBL A 0005 0051 C1
13 TLSTART A 1995101314200000 000D 0054 C1 07CB0A0D0E140000
13 TLEND A 1995101314320000 000D 0055 C1 07CB0A0D0E200000
13 TESTART A 0000000000000000 000D 0056 C1 0000000000000000

GetIndexFunctionStatus

Chapter 5. Calling the API functions 77

EhwGetIndexInfo
This function provides information about an information-retrieval index. The index
must have been opened before you can call EhwGetIndexInfo.

Input parameters
session pointer

Identifies the information-retrieval session. It is the pointer returned by
EhwStartSession when you start a session.

index handle
Identifies the information-retrieval index. It is the handle returned by
EhwOpenIndex when the index is opened.

Output parameters
data stream length

The length, in bytes, of the data contained in the index detail information
parameter.

index detail information
Lists the index type, the client and server executables of library services, data
path and work path of the index, and other index-specific information. This
parameter is returned in a data stream format (see “Data stream syntax”).

diagnosis information
There is no diagnosis information returned for this call.

return code
The following return code values can be returned with this call:

RC_DONE
RC_UNKNOWN_SESSION_POINTER
RC_INCORRECT_HANDLE
RC_UNEXPECTED_ERROR
RC_SERVER_NOT_AVAILABLE
RC_SERVER_BUSY
RC_SERVER_CONNECTION_LOST
RC_NOT_ENOUGH_MEMORY
RC_COMMUNICATION_PROBLEM
RC_IO_PROBLEM
RC_WRITE_TO_DISK_ERROR

See “Appendix A. The API return codes” on page 191 for more information
about these codes.

Data stream syntax

Index detail information

<< 06 XTYP A index_type
06 XTPROP A index_property

<

<
07 XCCSID A coded_char_set_id

<

GetIndexInfo

78 Text Search: Programming the Text Search Engine

< ll LSCE A library_services_client_executables <

< ll LSSE A library_services_server_executables ll XLOC A index_data_path <

< ll WLOC A index_work_path
ll LIBID A library_identifier

<

<
07 CCSID A coded_char_set_id ll XTTL A index_title

<

<
07 CCSID A coded_char_set_id ll XDESC A index_desc

<@

The data stream items are:

XTYP
Specifies the type of this index. The index type is a 1-byte code:

XTYP_LINGUISTIC
Specifies a linguistic index; that is, words are indexed in their base (lemma)
forms; for example, mouse and mice are both indexed as mouse.

XTYP_PRECISE
Specifies a precise index; that is, words are indexed in the grammatical
form in which they occur in the original text; for example, mice is indexed as
mice.

XTYP_GTR
Specifies an index not only for SBCS languages, but also for DBCS
languages, known as an Ngram index.

XTPROP
Specifies that the index has a non-default property.

XTPROP_SECTIONS_ENABLED
An index with this property contains information about the document
structure, such as title or author sections. For details on usage, see
“EhwCreateIndex” on page 52.

XCCSID
Specifies the CCSID for an Ngram index.

LSCE
Specifies the name of the client library services executable that must be used
with this index. The name does not include an extension.

The client library service provided with Text Search Engine to support all file
systems is named IMOLSCFS.

LSSE
Specifies the name of the server library services executable that must be used
with this index. The name does not include an extension.

The server library service is named IMOLSSFS.

XLOC
Specifies the data path where the index is located.

GetIndexInfo

Chapter 5. Calling the API functions 79

WLOC
Specifies the work path of the index.

LIBID
Specifies the symbolic library identifier with which the information-retrieval index
is associated.

XTTL
Specifies the title of the information-retrieval index.

XDESC
Specifies the description of the information-retrieval index.

CCSID
Specifies the CCSID of the title and title description. A CCSID is mandatory if a
title or title description exists.

Usage
Your application (or the users of your application) should know the index type to
avoid specifying unsupported queries. Also, the default processing of queries varies
for different index types. For details, refer to the EhwSearch function.

For information on the purpose and usage of library service functions, refer to
“Chapter 6. Connecting Text Search Engine to a library” on page 159.

Example
This is an example of an EhwGetIndexInfo function call:

/*---*/
/* invoke API function to obtain the index detail information */
/*---*/
ulReturnCode =
EhwGetIndexInfo (pSession, /* In -- session pointer */

ulIndexHandle, /* In -- index handle */
&ulDataLength, /* Out -- data stream length */
&pDataStream, /* Out -- index list */
&ulDiagInfo); /* Out -- diagnosis info. */

if (ulReturnCode != RC_DONE) /* check the API return code */
{

/* handle the function error */
} /* endif API call failed */
/*---*/

After completion of the function call, the area pointed to by pDataStream could
contain the following data stream, and ulDataLength would then have a value of 58.

Symbolic notation Hexadecimal representation

06 XTYP A XTYP_PRECISE 0006 003E C1 03
13 LSCE A IMOLSCFS 000D 003F C1 4548534C53434653
13 LSSE A IMOLSSFS 000D 0040 C1 4548534C53534653
13 XLOC A X:\PATH1 000D 0043 C1 583A5C5041544831
13 WLOC A X:\PATH2 000D 0044 C1 583A5C5041544832

GetIndexInfo

80 Text Search: Programming the Text Search Engine

EhwGetIndexingMsgs
This function lists indexing messages that can occur while Text Search Engine
indexes documents.

Input parameters
session pointer

Identifies the information-retrieval session. It is the pointer returned by
EhwStartSession when you start a session.

index handle
Identifies the information-retrieval index for which indexing messages are to be
retrieved. It is the handle returned by EhwOpenIndex when the index is opened.

Output parameters
data stream length

The length, in bytes, of the data contained in the indexing messages parameter.

indexing messages
Lists the indexing messages of the specified information-retrieval index starting
with the first message entry. This parameter is returned in a data stream format
(see “Data stream syntax”).

diagnosis information
There is no diagnosis information returned for this call.

return code
The following return code values can be returned with this call:

RC_DONE
RC_MORE_INFORMATION
RC_EMPTY_LIST
RC_UNKNOWN_SESSION_POINTER
RC_INCORRECT_HANDLE
RC_REQUEST_IN_PROGRESS
RC_UNEXPECTED_ERROR
RC_SERVER_NOT_AVAILABLE
RC_SERVER_BUSY
RC_SERVER_CONNECTION_LOST
RC_NOT_ENOUGH_MEMORY
RC_COMMUNICATION_PROBLEM
RC_IO_PROBLEM
RC_WRITE_TO_DISK_ERROR

See “Appendix A. The API return codes” on page 191 for more information
about these codes.

Data stream syntax

Indexing messages

<< ? Indexing Message <@

GetIndexingMsgs

Chapter 5. Calling the API functions 81

Indexing Message:

05 XMSG S 09 REASON error_code 13 TSTMP A time_stamp <

< ll DID A document_identifier
ll NLID A national_language_file_id

05 XMSG E

The data stream items are:

XMSG
Delimits one indexing message.

REASON
Specifies the reason why a document could not be indexed, or why a problem
occurred when a document was indexed. error code is a 4-byte unsigned long.
For error codes and their description, see “Appendix B. Error codes returned by
GetIndexingMsgs and GetIndexFunctionStatus” on page 207.

TSTMP
Specifies the time information when the problem occurred. For a description of
the format of time stamp see file IMOLSDEF.H provided with Text Search
Engine.

DID
Specifies the identifier of the document causing the current indexing message.

NLID
Specifies the identifier of the file ID of the missing national language dictionary
required to linguistically process one or more documents during one indexing
run of Text Search Engine.

Usage
Indexing messages occur when, for example:

v Documents cannot be indexed

v Documents are indexed, but a problem occurs

v A language dictionary cannot be found.

If a query does not provide the expected result, for example, a result list does not
contain documents that you know it should contain, use the EhwGetIndexingMsgs
call to check if documents could not be indexed due to some problems. Also, as
language dictionaries are needed for full linguistic processing, check if the
dictionaries for the subject language are available for the indexing process.

After retrieving indexing messages, use the EhwDelIndexingMsgs call to delete
some, or all, messages from the list that Text Search Engine maintains.

EhwGetIndexingMsgs tries to list all indexing messages available. When the return
code RC_MORE_INFORMATION is returned, there are more messages to list.
Before you can list these messages with another EhwGetIndexingMsgs call, you
first have to delete all or some of the messages that you already have retrieved.

Example
This is an example of an EhwGetIndexingMsgs function call:

GetIndexingMsgs

82 Text Search: Programming the Text Search Engine

/*--*/
/* function call to retrieve indexing messages */
/*--*/
ulReturnCode =
EhwGetIndexingMsgs(pSession, /* In -- session pointer */

ulIndexHdl, /* In -- index_handle */
&ulLength, /* Out -- length of data stream*/
&pchMsgTbl, /* Out -- data stream */
&ulDiagInfo); /* Out -- diagnosis info */

if (ulReturnCode != RC_DONE) /* check the API return code */
{

/* handle the function error */
} /* endif API call failed */

GetIndexingMsgs

Chapter 5. Calling the API functions 83

EhwGetIndexingRules
This function lists the default indexing rules that Text Search Engine applies when
format, language, and CCSID cannot be detected automatically for a document.

Input parameters
session pointer

Identifies the information-retrieval session. It is the pointer returned by
EhwStartSession when you start a session.

index handle
Identifies the information-retrieval index for which the indexing rules apply. It is
the handle returned by EhwOpenIndex when the index is opened.

Output parameters
data stream length

The length, in bytes, of the data contained in the indexing rules parameter.

indexing rules
Lists the indexing rules of the specified Text Search Engine index. This
parameter is returned in a data stream format (see “Data stream syntax”).

diagnosis information
There is no diagnosis information returned for this call.

return code
The following return code values can be returned with this call:

RC_DONE
RC_EMPTY_LIST
RC_UNKNOWN_SESSION_POINTER
RC_INCORRECT_HANDLE
RC_UNEXPECTED_ERROR
RC_SERVER_NOT_AVAILABLE
RC_SERVER_BUSY
RC_SERVER_CONNECTION_LOST
RC_NOT_ENOUGH_MEMORY
RC_COMMUNICATION_PROBLEM
RC_IO_PROBLEM
RC_WRITE_TO_DISK_ERROR

See “Appendix A. The API return codes” on page 191 for more information
about these codes.

Data stream syntax

Indexing rules

<< 05 DFLTRULE S 07 DFMT A document_format 07 CCSID A coded_cs_id <

< 07 LANG A language_id <

GetIndexingRules

84 Text Search: Programming the Text Search Engine

<
07 CCSID A coded_cs_id 11 DOCMOD A default_document_model

<

< 05 DFLTRULE E <@

The data stream items are:

DFLTRULE
Delimits the default indexing rule.

DFMT
Specifies the default document format that is assumed by Text Search Engine
when the format cannot be determined automatically for a document. File
IMOLSDEF.H, provided with Text Search Engine, defines symbolic names for all
document formats that are supported by Text Search Engine. The 2-byte binary
value is returned in big-endian format.

CCSID
Specifies the default SAA Coded Character Set Identifier that is applied by Text
Search Engine when it cannot be determined automatically for a document. File
IMOLANG.H, provided with Text Search Engine, defines symbolic names for all
CCSIDs that are supported by Text Search Engine. The 2-byte binary value is
returned in big-endian format.

LANG
Specifies the default language that is assumed by Text Search Engine when it
cannot be determined automatically for a document. File IMOLANG.H, provided
with Text Search Engine, defines symbolic names for all language identifiers
that are supported by Text Search Engine. The 2-byte binary value is returned
in big-endian format.

CCSID
Specifies the SAA Coded Character Set Identifier for the following string.

DOCMOD
Specifies the default model to be used for section-enabled indexes.

Usage
When indexing a document, Text Search Engine needs to know:

v Which type of document it is; if it is an AmiPro document, for example, or a flat
ASCII file

v Which language the document is written in

v Which CCSID is used.

Most document formats are detected by Text Search Engine automatically, but a
document does not always contain information about the language and CCSID that
it is written in. So Text Search Engine needs a default indexing rule that is applied
whenever the necessary information about the document format, language, and
CCSID cannot be determined automatically.

Use the EhwGetIndexingRules call to check which indexing rules are currently
active. For Ngram indexes, the value of CCSID is the one the index was created
for. Documents written in a different CCSID cannot be indexed.

For indexes that have addditional type XTPROP_SECTIONS_ENABLED,
addditional output consists of the name of the document model being used during

GetIndexingRules

Chapter 5. Calling the API functions 85

EhwUpdate processing. The CCSID preceding it gives the value of the SAA Coded
Character Set Identifier used for encoding the string.

Check that the document format and document model agree. If the document
format has been set correctly, but the chosen model defines a set of tags that are
not valid for that document format, the index will not contain section information.

Example
This is an example of an EhwGetIndexingRules function call:

/*--*/
/* Invoke API function to get the default indexing rules */
/*--*/
ulReturnCode =
EhwGetIndexingRules(pSession, /* In -- session pointer */

ulIndexHdl, /* In -- index_handle */
&ulLength, /* Out -- length of data stream*/
&pchRule, /* Out -- data stream */
&ulDiagInfo);/* Out -- diagnosis info */

if (ulReturnCode != RC_DONE) /* check the API return code*/
{

/* handle the function error*/
} /* endif API call failed */

GetIndexingRules

86 Text Search: Programming the Text Search Engine

EhwGetIndexStatus
This function returns a data stream containing information about the number of
documents in an information-retrieval index, the number of requests in the indexing
queue, the number of document messages written during indexing, and if the index
is currently active. If the index is suspended, the return code indicates the time
when an attempt was made to open or access the index.

Input parameters
session pointer

Identifies the information-retrieval session. It is the pointer returned by
EhwStartSession when you start a session.

index handle
Identifies the information-retrieval index for which status information is to be
provided. It is the handle returned by EhwOpenIndex when the index is opened.

Output parameters
data stream length

The length, in bytes, of the data contained in the index status information
parameter.

index status information
Lists status information for the requested index. This parameter is returned in a
data stream format (see “Data stream syntax”).

diagnosis information
There is no diagnosis information returned for this call.

return code
The following return code values can be returned with this call:

RC_DONE
RC_UNKNOWN_SESSION_POINTER
RC_INCORRECT_HANDLE
RC_SERVER_CONNECTION_LOST
RC_REQUEST_IN_PROGRESS
RC_NOT_ENOUGH_MEMORY
RC_INDEX_SUSPENDED
RC_MAX_NUMBER_OF_INDEXES
RC_COMMUNICATION_PROBLEM
RC_UNEXPECTED_ERROR

See “Appendix A. The API return codes” on page 191 for more information
about these codes.

Data stream syntax

Index status information

<< 07 XFLAG A index_status_flag 09 SCHDOCS A number_scheduled_documents <

< 09 PDOCS A number_docs_in_primary_index <

GetIndexStatus

Chapter 5. Calling the API functions 87

< 09 SDOCS A number_docs_in_secondary_index <

< 09 DOCMSG A number_indexing_messages <@

The data stream items are:

XFLAG
Index status flag.

XFLAG_READ_WRITE
The index is active, all functions are available.

XFLAG_READ_ONLY
The index is suspended and is in a read-only mode, that is,
EhwGetIndexFunctionStatus API calls are permitted. If the index is
suspended totally, RC_INDEX_SUSPENDED is returned.

SCHDOCS
The number of indexing requests scheduled.

PDOCS
The number of documents in the primary index.

SDOCS
The number of documents in the secondary index.

If this number becomes large compared to the number of documents in the
primary index, use EhwReorgIndex to merge the primary and secondary
indexes to improve performance in searching for and indexing documents.

DOCMSG
The number of document messages written during indexing. Use
EhwGetIndexingMsgs to get the content of these messages.

Usage
To get the status of an information-retrieval index, issue an EhwGetIndexStatus call.
A data stream with the above described items is returned.

Note that, if an index is suspended totally, there are no data stream items returned
but a return code indicating the suspension.

Example
This is an example of an EhwGetIndexStatus call. At the time of the call, the index
is active and there are documents in the index. The indexing queue is not empty.

/*---*/
/* Invoke API function to obtain the function status */
/*---*/
ulReturnCode =
EhwGetIndexStatus(pSession, /* In -- session pointer */

ulIndexHdl, /* In -- index handle */
&ulDataLength, /* Out -- data stream length */
&pStream, /* Out -- index status info */
&ulDiagInfo); /* Out -- diagnosis info */

if (ulReturnCode != RC_DONE) /* check the API return code*/
{

GetIndexStatus

88 Text Search: Programming the Text Search Engine

/* handle the function error*/
} /* endif API call failed */
/*---*/

After completion of the function call, the area pointed to by pDataStream could
contain the following data stream, and ulDataLength would then have a value of
043.

Symbolic notation Hexadecimal representation

07 XFLAG A XFLAG_READ_WRITE 0007 0049 C1 0002
09 SCHDOCS A 25 0009 004A C1 00000019
09 PDOCS A 100 0009 004B C1 00000064
09 SDOCS A 5 0009 004C C1 00000005
09 DOCMSG A 3 0009 004D C1 00000003

GetIndexStatus

Chapter 5. Calling the API functions 89

EhwGetMatches
This function returns the text of the document and highlighting information for all
matches of the corresponding query.

Input parameters
session pointer

Identifies the information-retrieval session. It is the pointer returned by
EhwStartSession when you start a session.

document handle
Identifies the document handle. It is the handle returned by
EhwOpenDocument.

Output parameters
data stream length

The length, in bytes, of the data contained in the document text parameter.

document text
Contains the document text and the highlighting information for all matches.
This parameter is returned in a data stream format (see “Data stream syntax”).

diagnosis information
There is no diagnosis information returned for this call.

return code
The following return code values can be returned with this call:

RC_DONE
RC_CONTINUATION_MODE_ENTERED
RC_DICTIONARY_NOT_FOUND
RC_UNKNOWN_SESSION_POINTER
RC_REQUEST_IN_PROGRESS
RC_INCORRECT_HANDLE
RC_LS_FUNCTION_FAILED
RC_NOT_ENOUGH_MEMORY
RC_CAPACITY_LIMIT_EXCEEDED
RC_UNEXPECTED_ERROR
RC_IO_PROBLEM
RC_GTR_ERROR

See “Appendix A. The API return codes” on page 191 for more information
about these codes.

Data stream syntax

Document text

<< 05 DOC S
ll DNAM A document_name

? Section 05 DOC E <@

Section:

05 DEL S
ll SNAM A section_name

<

GetMatches

90 Text Search: Programming the Text Search Engine

< ? ?Text encoding Paragraph 05 DEL E

Text encoding:

07 CCSID A coded_character_set_identifier <

< 07 LANG A language_identifier

Paragraph:

05 PAR S ? Paragraph text 05 PAR E

Paragraph text:

ll TEXT A text_unit ?

05 NL A
<

<
ll MATCH A match_information

The data stream items are:

DOC
Indicates the start and end of a document.

DNAM
Specifies a document name. If no name is specified, the identifier of the
document is used.

DEL
Indicates the start and end of a document element. The type of document
element supported is a text section.

SNAM
Specifies the name of a text section.

PAR
Indicates the start and end of a text paragraph within the current section.

TEXT
Specifies one text portion within the current paragraph. Usually, text unit
contains one line of text, and the TEXT item is followed by an NL item; but text

GetMatches

Chapter 5. Calling the API functions 91

lines can also be split into several parts, each part specified in its own TEXT
item. The text uses the CCSID and language associated with the current
paragraph.

NL
Indicates the start of a new line in the current paragraph.

MATCH
Contains occurrence information for matches in the current text portion. The
information is supplied as a sequence of binary number pairs. The first number
in each pair is the offset of a match within the current text portion, the second
number is the length (in bytes) of that match. The given length can exceed the
length of the given text portion. Both offset and length are 2-byte values
specified in big-endian format.

CCSID
Specifies the SAA Coded Character Set Identifier for text in the following
paragraphs, which remains valid until a paragraph is preceded by a new CCSID
item. The following CCSIDs are returned:

CCSID_00500
For text in the Latin-1 EBCDIC CCSID 500.

CCSID_0850
For text in the Latin-1 ASCII CCSID 850.

CCSID_00819
For text in the ASCII CCSID 819 as defined by ISO standard 8859-1.

CCSID_00942
For text in the Shift-JIS CCSID for combined Japanese.

CCSID_00949
For text in CCSID for combined Korean.

CCSID_00950
For text in CCSID for combined Traditional Chinese.

CCSID_01381
For text in CCSID for combined Simplified Chinese.

The symbolic names for CCSIDs are defined in the file IMOLANG.H of the
library services toolkit provided with Text Search Engine. The 2-byte binary
value is specified in big-endian format.

LANG
Specifies the language identifier for text in the subsequent paragraphs. It is
valid until a paragraph is preceded by a new LANG item. File IMOLANG.H in
the library services toolkit defines symbolic names for all language identifiers
supported by Text Search Engine. The 2-byte binary value is specified in
big-endian format.

The symbolic names for the item identifiers of the above data stream items are
defined in the file IMOLSDEF.H of the library services toolkit provided with Text
Search Engine.

Usage
This function allows you to get the text of a document and the highlighting
information for use by your own browser program. EhwGetMatches returns the text
in portions. When all portions of the document text have been returned, the return
code RC_DONE indicates the end of the document.

GetMatches

92 Text Search: Programming the Text Search Engine

Note: When RC_DONE is returned, and you want to repeat EhwGetMatches from
the beginning of the document, you must first close the document and open
it again. This is unlike other functions which automatically start from the
beginning of the document the next time they are called after RC_DONE.

Example
This is an example of an EhwGetMatches function call:

/*---*/
/* Get the document text with matches */
/*---*/
ulReturnCode =
EhwGetMatches (pSession, /* In -- session pointer */

ulDocHandle, /* In -- document handle */
pulDataLength, /* Out -- data stream length */
ppDataStream, /* Out -- text and matches */
pulDiagnosisInfo /* Out -- diagnosis info */

);

if (ulReturnCode != RC_DONE) /* check the API return code */
{

/* handle the function error */
} /* endif API call failed */
/*---*/

After completion of the last function call, the area pointed to by pDataStream could
contain the following data stream, and ulDataLength would have a value of 96.

Symbolic notation Hexadecimal representation

05 DOC S 0005 019A E2
05 DEL S 0005 01A4 E2
07 CCSID A CCSID_0850 0007 0073 C1 1352
07 LANG A LANG_ENU 0007 0074 C1 177B
05 PAR S 0005 01AE E2
16 TEXT A First line. 0010 01B8 C1 466972...
05 NL A 0005 01BC C1
17 TEXT A Match found. 0011 01B8 C1 4D6174...
05 NL A 0005 01BC C1
09 MATCH A 0005 0009 01C2 C1 00000005
05 PAR E 0005 01AE C5
05 DEL E 0005 01A4 C5
05 DOC E 0005 019A C5

GetMatches

Chapter 5. Calling the API functions 93

EhwGetProblemInfo
When EhwSearch searches across several indexes and one or more indexes report
problems, the EhwSearch return code applies to the index group as a whole. When
this happens, you can use EhwGetProblemInfo to get specific error information
about one information-retrieval index.

Input parameters
session pointer

Identifies the information-retrieval session. It is the pointer returned by
EhwStartSession when you start a session.

result handle
Identifies the search result handle supplied by a previous EhwSearch call.

Output parameters
data stream length

The length, in bytes, of the data contained in problem information.

problem information
Lists the return code for each index that had problems during a cross-index
search on an index group. This parameter is returned in a data stream format
(see “Data stream syntax” on page 78).

diagnosis information
There is no diagnosis information returned for this call.

return code
The following return code values can be returned with this call:

RC_DONE
RC_UNKNOWN_SESSION_POINTER
RC_INCORRECT_HANDLE
RC_CONFLICTING_TASK_RUNNING
RC_EMPTY_LIST
RC_UNEXPECTED_ERROR

See also “Appendix A. The API return codes” on page 191.

Data stream syntax

Problem information

<< 05 IRX S ll XNAM A index_name 09 XRC A index_specific_return_code <

< 05 IRX E <@

The data stream items are:

IRX
Delimits the information supplied for the index.

XNAM
Name of the index for which an error occurred.

XRC
Specifies the index-specific return code.

GetProblemInfo

94 Text Search: Programming the Text Search Engine

Usage
When a cross-index search is started by EhwSearch on an index group, errors may
occur. To determine the reason for each index-specific error, use
EhwGetProblemInfo to find which index caused the problem. On return, the error
return codes and the related index names are supplied in a data stream format.

Even if the result is empty because all indexes were in error, a result handle is
returned by EhwSearch to allow subsequent error handling by the caller.

Example
This is an example of an EhwGetProblemInfo function call:

/*---*/
/* invoke API function to obtain the index RC information */
/*---*/
ulReturnCode =
EhwGetProblemInfo(pSession, /* In -- session pointer */

ulResultHandle, /* In -- index handle */
&ulDataLength, /* Out -- data stream length*/
&pDataStream, /* Out -- problem info */
&ulDiagnosisInfo); /* Out -- diagnosis info. */

if (ulReturnCode != RC_DONE) /* check the API return code*/
{

/* handle the function error*/
} /* endif API call failed */
/*---*/

After completion of the function call, the area pointed to by pDataStream could
contain the following data stream, and ulDataLength would then have a value of 30.

Symbolic notation Hexadecimal representation

05 IRX S 0005 0032 E2
13 XNAM A EHWINDEX 000D 003C C1 454857494E444558
07 XRC A INDEX_NOT_ACCESSIBLE 0007 003E C1 02BC
05 IRX E 0005 0032 C5

GetProblemInfo

Chapter 5. Calling the API functions 95

EhwGetResultView
This function lists descriptive information for all documents of a specified search
result list.

Input parameters
session pointer

Identifies the information-retrieval session. It is the pointer returned by
EhwStartSession when you start a session.

result list handle
Identifies the search result list to be accessed. It is a handle returned by
EhwCreateResultView or EhwSelectResultView.

Output parameters
data stream length

The length, in bytes, of the data contained in the result list parameter.

result list
A list of descriptions for all documents of the specified search result list. This
parameter is returned in a data stream format (see “Data stream syntax”).

diagnosis information
There is no diagnosis information returned for this call.

return code
The following return code values can be returned with this call:

RC_DONE
RC_CONTINUATION_MODE_ENTERED
RC_EMPTY_LIST
RC_UNKNOWN_SESSION_POINTER
RC_INCORRECT_HANDLE
RC_REQUEST_IN_PROGRESS
RC_UNEXPECTED_ERROR
RC_SERVER_NOT_AVAILABLE
RC_SERVER_BUSY
RC_SERVER_CONNECTION_LOST
RC_NOT_ENOUGH_MEMORY
RC_COMMUNICATION_PROBLEM
RC_IO_PROBLEM
RC_WRITE_TO_DISK_ERROR

See “Appendix A. The API return codes” on page 191 for more information
about these codes.

Data stream syntax

Result list

<< ? 05 DOC S Docs 05 DOC E
Num

<@

GetResultView

96 Text Search: Programming the Text Search Engine

Docs:

ll DID A document_id ll XNAM A index_name

Num:

06 RVAL A rank_value Basic values

Basic values:

09 DSIZE A doc_size 07 RCNT A rank_count

The data stream items are:

DOC
Delimits the information returned for each document in the search result.

DID
Specifies the identifier of a document.

XNAM
Name of the index that the document belongs to.

RVAL
Rank value. This value is available only if EhwRank was used to add rank
information to each document’s result handle.

DSIZE
Number of word occurrences in the document, excluding stop words. This value
is available only if EhwRank was used to add rank information to each
document’s result handle. It is not delivered for queries containing a free-text
argument.

RCNT
The number of matches in the document that contributed to ranking.

This value is available only if EhwRank was used to add rank information to
each document’s result handle. It is not delivered for queries containing a
free-text argument.

Usage
EhwGetResultView returns one portion of the result list. The size of each portion is
determined by Text Search Engine and may be different for each call.

When the return code RC_CONTINUATION_MODE_ENTERED is returned, there
may be more information to list. When the return code RC_DONE is returned, there
is no more information available.

You can list only one search result at a time. If an EhwGetResultView call returns
RC_CONTINUATION_MODE_ENTERED, you can continue listing the same result
with further EhwGetResultView calls; but when you issue an EhwGetResultView call
for a different result, the continuation mode of the previous call is canceled.

GetResultView

Chapter 5. Calling the API functions 97

Note that EhwGetResultView does not check whether the users of your application
are authorized to access the documents listed in a search result.

Example
This is an example of an EhwGetResultView function call:

/*--*/
/* Call API function EhwGetResultView until end of data is indicated */
/*--*/
do
{

ulReturnCode =
EhwGetResultView (pSession, /* In -- session pointer */

ulResultViewHandle, /* In -- result view handle */
&ulDataLength, /* Out -- data stream length */
&pDataStream, /* Out -- result view data */
&ulDiagnosisInfo); /* Out -- diagnosis info. */

/* check the API return code */
if ((ulReturnCode != RC_DONE) &&;

(ulReturnCode != RC_CONTINUATION_MODE_ENTERED))
{

/* handle the function error */
} /* endif API call failed */

/*--*/
/* Parse the result view data stream ... */
/*--*/

} while (ulReturnCode == RC_CONTINUATION_MODE_ENTERED)
/*---*/

After completion of the last function call, the area pointed to by pDataStream could
contain the following data stream, and ulDataLength would then have a value of 76.

Symbolic notation Hexadecimal representation

05 DOC S 0005 019A E2
31 DID A \\NOE007\DATA\ 001F 006A C1 5C5C4E...

NEWS0815.DOC
13 XNAM A EHWINDEX 000D 003C C1 454857...
06 RVAL 50 0006 0218 C1 32
09 DSIZE 2213 0009 021A C1 0000 08A5
07 RCNT 2 0007 0219 C1 0002
05 DOC E 0005 019A C5

GetResultView

98 Text Search: Programming the Text Search Engine

EhwListDocumentModels
This function lists all document models.

The target of this call can be either the server instance related to the current
session or any section-enabled index opened previously.

The set of models defined for the server instance serves as a collection of models
to choose from when creating a section-enabled index. However, indexes can work
with models unknown to the server instance. This can happen if a new model was
defined for a specific index (see “EhwCreateDocumentModel” on page 49), but not
for the server instance.

Input parameters
session pointer

Identifies the information-retrieval session. It is the pointer returned by
EhwStartSession when you start a session.

index handle
Specifies the information-retrieval index to use. It is the handle returned by
EhwOpenIndex when the index is opened. If this function is called to list all
models defined for an index, this is the handle returned by a previous call to
EhwOpenIndex. If this function is called to list all models defined for a server
instance, the index handle must have the value 0L.

Output parameters
data stream length

The length, in bytes, of the data contained in the document model list
datastream.

document model list
A list of all models defined for either the server instance or the index specified
by the index handle input parameter. The output is returned in datastream
format. See “Data stream syntax” on page 100.

diagnosis information
There is no diagnosis information returned for this call.

return code
The following return code values can be returned with this call:

RC_DONE
RC_UNKNOWN_SESSION_POINTER
RC_DATASTREAM_SYNTAX_ERROR
RC_INCORRECT_AUTHENTICATION (AIX only)
RC_UNEXPECTED_ERROR
RC_SERVER_NOT_AVAILABLE
RC_SERVER_BUSY
RC_SERVER_CONNECTION_LOST
RC_NOT_ENOUGH_MEMORY
RC_COMMUNICATION_PROBLEM
RC_IO_PROBLEM
RC_CONFLICT_WITH_INDEX_TYPE
RC_DOCMOD_READ_PROBLEM
RC_INCORRECT_HANDLE

See “Appendix A. The API return codes” on page 191 for more information
about these codes.

ListDocumentModels

Chapter 5. Calling the API functions 99

Data stream syntax

Document model list

<< 07 CCSID A coded_cs_id 05 MODLST S <

< ? ll DOCMOD A document_model_name 05 MODLST E <@

The data stream items are:

CCSID
Specifies the SAA Coded Character Set Identifier for the subsequent strings.

Depending on operating system, the values are EHWCCSID_00819 or
EHWCCSID_00500.

MODLST
Delimits the list of documetn model names defined for the server instance or for
the index specified by the index handle.

DOCMOD
A document model name in the document model list.

Usage
When creating a new index that is to support sections, use this call to get a list of
available document models on your server instance. If creation of an index failed
with RC_DOCMOD_READ_PROBLEM, use this call (index handle 0L) to get a list
of the available document models for the server instance you work with. If queries
fail with RC_DOCMOD_READ_PROBLEM, use this call, with an index handle for
the index that was used for the query, to get a list of document models defined for
the index you want to search on. If Update fails to index certain documents,
indicating only ″UNKNOWN_DOCUMENT_MODEL″ when
EhwGetIndexingMessages is called, use this call, with an index handle for the index
which was used for update, to get a list of document models defined for that index.
To get information on a specific document model, use the API call
“EhwGetDocumentModel” on page 72. For information on which default model is
used for a specific index, use “EhwGetIndexingRules” on page 84.

Example
This is an example of an EhwListDocumentModels function call:
/*---*/
/* List document models known to a information-retrieval index */
/*---*/
ulReturnCode =
EhwListDocumentModels (pSession, /* In -- session pointer */

ulIndexHandle, /* IN -- index_handle */
&ulDataLength, /* OUT -- data stream length*/
&pDataStream, /* OUT -- index information */
&ulDiagnosisInfo); /* Out -- diagnosis info. */

if (ulReturnCode != RC_DONE) /* check the API return code */
{

ListDocumentModels

100 Text Search: Programming the Text Search Engine

/* handle the function error */
} /* endif API call failed */
/*---*/

ListDocumentModels

Chapter 5. Calling the API functions 101

EhwListIndexes
This function provides a list of the information-retrieval indexes accessible from the
current session.

Input parameters
session pointer

Identifies the information-retrieval session. It is the pointer returned by
EhwStartSession when you start a session.

Output parameters
data stream length

The length, in bytes, of the data contained in the index list parameter.

index list
A list of the information-retrieval indexes accessible from the current session.
This parameter is returned in a data stream format (see “Data stream syntax”).

diagnosis information
There is no diagnosis information returned for this call.

return code
The following return code values can be returned with this call:

RC_DONE
RC_CONTINUATION_MODE_ENTERED
RC_EMPTY_LIST
RC_UNKNOWN_SESSION_POINTER
RC_UNKNOWN_SERVER_NAME
RC_REQUEST_IN_PROGRESS
RC_UNEXPECTED_ERROR
RC_SERVER_NOT_AVAILABLE
RC_SERVER_BUSY
RC_SERVER_CONNECTION_LOST
RC_NOT_ENOUGH_MEMORY
RC_COMMUNICATION_PROBLEM
RC_IO_PROBLEM
RC_WRITE_TO_DISK_ERROR

See “Appendix A. The API return codes” on page 191 for more information
about these codes.

Data stream syntax

Index list

<< ? 05 IRX S Index name (and library) 05 IRX E <@

Index name (and library):

ll XNAM A index_name
ll LIBID A library_identifier

ListIndexes

102 Text Search: Programming the Text Search Engine

The data stream items are:

IRX
Delimits the information returned for each index.

XNAM
Specifies the name of the information-retrieval index.

LIBID
Specifies the library identifier of the information-retrieval index.

Usage
If provided, the LIBID item has to be specified as an input parameter when the
library services function LIB_init is called.

Example
This is an example of an EhwListIndexes function call:

/*---*/
/* Call API function EhwListIndexes until end of data is indicated */
/*---*/
do
{

ulReturnCode =
EhwListIndexes (pSession, /* In -- session pointer */

&ulDataLength, /* Out -- data stream length */
&pDataStream, /* Out -- index list */
&ulDiagnosisInfo /* Out -- diagnosis info. */

);
/* check the API return code */

if ((ulReturnCode != RC_DONE) &&;
(ulReturnCode != RC_CONTINUATION_MODE_ENTERED))

{
/* handle the function error */

} /* endif API call failed */

/*--*/
/* Parse the index list data stream ... */
/*--*/

} while (ulReturnCode == RC_CONTINUATION_MODE_ENTERED)
/*---*/

After completion of the function call, the area pointed to by pDataStream could
contain the following data stream, and ulDataLength would then have a value of 57.

Symbolic notation Hexadecimal representation

05 IRX S 0005 0032 E2
13 XNAM A EHWINDEX 000D 003C C1 454857494E444558
05 IRX E 0005 0032 C5
05 IRX S 0005 0032 E2
12 XNAM A INDEX07 000C 003C C1 494E4445583037
12 LIBID A LIBID07 000C 0041 C1 4C494249443037
05 IRX E 0005 0032 C5

ListIndexes

Chapter 5. Calling the API functions 103

EhwListResult
This function lists the documents of a specified search result. Use this function
when you are not interested in working with a search result view but simply want a
list of all documents resulting from an EhwSearch request.

Input parameters
session pointer

Identifies the information-retrieval session. It is the pointer returned by
EhwStartSession when you start a session.

result handle
Identifies the search result to be listed. It is the handle returned by an
EhwSearch call.

Output parameters
data stream length

The length, in bytes, of the data contained in the result list parameter.

result list
A list of the documents of the specified search result. If the result contains
documents from more than one index, the function lists the documents of the
search result and the index name where each of them was found. This
parameter is returned in a data stream format (see “Data stream syntax”).

diagnosis information
There is no diagnosis information returned for this call.

return code
The following return code values can be returned with this call:

RC_DONE
RC_CONTINUATION_MODE_ENTERED
RC_UNKNOWN_SESSION_POINTER
RC_INCORRECT_HANDLE
RC_REQUEST_IN_PROGRESS
RC_UNEXPECTED_ERROR
RC_SERVER_NOT_AVAILABLE
RC_SERVER_BUSY
RC_SERVER_CONNECTION_LOST
RC_NOT_ENOUGH_MEMORY
RC_COMMUNICATION_PROBLEM
RC_IO_PROBLEM
RC_WRITE_TO_DISK_ERROR

See “Appendix A. The API return codes” on page 191 for more information
about these codes.

Data stream syntax

Result list

<< ? 05 DOC S Doc info 05 DOC E <@

ListResult

104 Text Search: Programming the Text Search Engine

Doc info:

ll XNAM A index_name
ll DID A document_id

The data stream items are:

DOC
Delimits the information returned for each document in the search result.

XNAM
Specifies the name of the index where the document was found.

DID
Specifies the identifier of a document.

Usage
EhwListResult returns a portion of the result list. The size of each portion is
determined by Text Search Engine and can be different for each call.

When the return code RC_CONTINUATION_MODE_ENTERED is returned, there
may be more information to list. When the return code RC_DONE is returned, there
is no more information available.

You can list only one search result at a time. If an EhwListResult call returns
RC_CONTINUATION_MODE_ENTERED, you can continue listing the same result
with further EhwListResult calls; but when you issue an EhwListResult call for a
different result, the continuation mode of the previous call is canceled.

Note that EhwListResult does not check whether the users of your application are
authorized to access the documents listed in a search result.

Example
This is an example of an EhwListResult function call:

/*---*/
/* Call API function EhwListResult until end of data is indicated */
/*---*/
do
{

ulReturnCode =
EhwListResult (pSession, /* In -- session pointer */

ulResultHandle, /* In -- result handle */
&ulDataLength, /* Out -- data stream length */
&pDataStream, /* Out -- result list */
&ulDiagnosisInfo);/* Out -- diagnosis info. */

/* check the API return code */
if ((ulReturnCode != RC_DONE) &&;

(ulReturnCode != RC_CONTINUATION_MODE_ENTERED))
{

/* handle the function error */
} /* endif API call failed */

/*--*/
/* Parse the result list data stream ... */
/*--*/

} while (ulReturnCode == RC_CONTINUATION_MODE_ENTERED)
/*---*/

ListResult

Chapter 5. Calling the API functions 105

After completion of the last function call, the area pointed to by pDataStream could
contain the following data stream, and ulDataLength would then have a value of
163.

Symbolic notation Hexadecimal representation

05 DOC S 0005 019A E2
31 DID A \\NOE007\DATA\ 001F 006A C1 5C5C4E...

NEWS0815.DOC
31 DID A \\NOE007\DATA\ 001F 006A C1 5C5C4E...

NEWS2259.DOC
30 DID A \\NOE099\LIB2\ 001E 006A C1 5C5C4E...

USGUIDE.DOC
30 DID A \\NOE099\LIB2\ 001E 006A C1 5C5C4E...

HLPINFO.DOC
31 DID A \\NOE099\LIB2\ 001F 006A C1 5C5C4E...

PLATFORM.DOC
05 DOC E 0005 019A C5

ListResult

106 Text Search: Programming the Text Search Engine

EhwListServers
This function lists the symbolic names of the Text Search Engine servers connected
to the client workstation on which it is called.

The symbolic name of a server is the search service name provided when
configuring or creating a client. Each search service is connected to one server; its
name can be used as input to an EhwStartSession call.

Input parameters
None.

Output parameters
data stream length

The length, in bytes, of the data contained in the server list parameter.

server list
A list of the Text Search Engine servers that can be connected to the calling
application. This parameter is returned in a data stream format (see “Data
stream syntax”).

diagnosis information
There is no diagnosis information returned for this call.

return code
The following return code values can be returned with this call:

RC_DONE
RC_EMPTY_LIST
RC_UNEXPECTED_ERROR
RC_NOT_ENOUGH_MEMORY
RC_COMMUNICATION_PROBLEM
RC_IO_PROBLEM
RC_WRITE_TO_DISK_ERROR

See also “Appendix A. The API return codes” on page 191.

Data stream syntax

Server list

<< ? 05 IRS S Server information 05 IRS E <@

Server information

ll IRSN A server_name 06 IRSL A server_location

The data stream items are:

IRS
Delimits the information returned for each server.

ListServers

Chapter 5. Calling the API functions 107

IRSN
Specifies the symbolic name of the Text Search Engine server. This name is
associated with the server when the service object is defined on the client
workstation. It must be specified when you want to start a session with this
server.

IRSL
Indicates the location of the Text Search Engine server. The server location is a
1-byte code that can have one of the following values:

IRSL_LOCAL
for a local server on the client workstation.

IRSL_REMOTE
for a remote server on a LAN workstation.

The output of a server location refers to the communication protocol chosen to be
used between the search service and the server, rather than the exact physical
location of the search service and the server. Whenever the communication protocol
is ’local’, the server location is IRSL_LOCAL. Whenever the communication protocol is
’TCPIP’, the server location is IRSL_REMOTE, even if the search service and the
server are physically on the same machine.

Usage
The servers are listed regardless of the status of each server or whether a
connection can be established at this time. Availability of the server is checked only
when you actually start an information-retrieval session using EhwStartSession.

Example
This is an example of an EhwListServers function call:
/*---*/
/* Obtain a list of the search servers */
/*---*/

ulReturnCode =
EhwListServers (&ulDataLength, /* Out -- data stream length */

&pDataStream, /* Out -- server list */
&ulDiagnosisInfo); /* Out -- diagnosis info. */

if (ulReturnCode != RC_DONE) /* check the API return code */
{

/* handle the function error */
} /* endif API call failed */

/*---*/

After completion of the function call, the area pointed to by pDataStream could
contain the following data stream, and ulDataLength would then have a value of 87.

ListServers

108 Text Search: Programming the Text Search Engine

Symbolic notation Hexadecimal representation

05 IRS S 0005 000A E2
13 IRSN A SERVER01 000D 000B C1 5345525645523031
06 IRSL A IRSL_LOCAL 0006 000C C1 00
05 IRS E 0005 000A C5
05 IRS S 0005 000A E2
13 IRSN A SERVER02 000D 000B C1 5345525645523032
06 IRSL A IRSL_REMOTE 0006 000C C1 01
05 IRS E 0005 000A C5
05 IRS S 0005 000A E2
13 IRSN A SERVER03 000D 000B C1 5345525645523033
06 IRSL A IRSL_REMOTE 0006 000C C1 01
05 IRS E 0005 000A C5

ListServers

Chapter 5. Calling the API functions 109

EhwOpenDocument
This function prepares a document to return the document text and the highlighting
information needed by a subsequent call of EhwGetMatches.

Input parameters
session pointer

Identifies the information-retrieval session. It is the pointer returned by
EhwStartSession when you start a session.

result handle
Identifies the search result from which the document is to be browsed. It is the
handle returned by an EhwSearch call.

data stream length
The length, in bytes, of the data contained in the browse specifications
parameter.

browse specifications
Specifies the document to be browsed. This parameter is supplied in a data
stream format (see “Data stream syntax” on page 111).

processing condition
Specifies whether the highlight information is to be obtained using a dictionary.
v MATCH_FAST: without dictionary
v MATCH_EXTENDED: with dictionary

For Ngram indexes, the processing condition is ignored.

Output parameters
document handle

Identifies the prepared document for later call of EhwGetMatches.

diagnosis information
There is no diagnosis information returned for this call.

return code
The following return code values can be returned with this call:

RC_DONE
RC_DOCUMENT_IN_ERROR
RC_DOCUMENT_NOT_FOUND
RC_DOCUMENT_NOT_ACCESSIBLE
RC_UNKNOWN_SESSION_POINTER
RC_UNKNOWN_INDEX_NAME
RC_DATASTREAM_SYNTAX_ERROR
RC_DOCUMENT_IN_ERROR
RC_DOCUMENT_NOT_SUPPORTED
RC_REQUEST_IN_PROGRESS
RC_INCORRECT_HANDLE
RC_NOT_ENOUGH_MEMORY
RC_LS_NOT_EXECUTABLE
RC_LS_FUNCTION_FAILED
RC_IO_PROBLEM
RC_UNEXPECTED_ERROR

See “Appendix A. The API return codes” on page 191 for more information
about these codes.

OpenDocument

110 Text Search: Programming the Text Search Engine

Data stream syntax

Browse specifications

<< ll DID A document_id
ll XNAM A index_name

<@

The data stream items are:

DID
Specifies the identifier of the document whose text and the highlighting
information is required.

XNAM
Specifies the name of the index to be used. This item must be provided for
results of searches across several indexes. When the resulting documents are
in only one index, this item can be omitted.

Usage
This function allows a user to prepare a document for later returning of the
document text and highlighting information. The returned document handle is
allowed only in subsequent calls of EhwGetMatches and EhwCloseDocument.

When the search service is integrated in a library system, such as IBM Content
Manager, the document must be accessed in the library’s document repository. If
logging on to the library is required during this access, you must pass library
information, such as user ID and password, at start session for use by
EhwOpenDocument.

Example
This is an example of an EhwOpenDocument function call:

/*---*/
/* Open the document to get the document text with matches */
/*---*/
ulReturnCode =
EhwOpenDocument (pSession, /* In -- session pointer */

ulResultHandle, /* In -- result handle */
ulDataLength, /* In -- data stream length */
pDataStream, /* In -- browse specifications*/
ProcMode, /* In -- processing mode */
pulDocHandle, , /* Out -- document handle */
pulDiagnosisInfo /* Out -- diagnosis info */

);

if (ulReturnCode != RC_DONE) /* check the API return code */
{

/* handle the function error */
} /* endif API call failed */
/*---*/

The area pointed to by pDataStream could contain the following data stream, and
ulDataLength would have a value of 51.

OpenDocument

Chapter 5. Calling the API functions 111

Symbolic notation Hexadecimal representation

31 DID A \\NOE099\LIB2\ 001F 006A C1 5C5C4E...
PLATFORM.DOC

12 XNAM A EHWINDEX 000C 003C C1 454857...

OpenDocument

112 Text Search: Programming the Text Search Engine

EhwOpenIndex
This function opens an information-retrieval index. You must open an index before
you can perform functions such as search or update.

Input parameters
session pointer

Identifies the information-retrieval session. It is the pointer returned by
EhwStartSession when you start a session.

data stream length
The length, in bytes, of the data contained in the index name parameter.

index name
Specifies the information-retrieval index to be opened. This parameter is
supplied in a data stream format (see “Data stream syntax” on page 114).

Output parameters
index handle

Identifies the information-retrieval index and its status. The index handle is used
as an input parameter for search and indexing functions.

diagnosis information
There is no diagnosis information returned for this call.

return code
The following return code values can be returned with this call:

RC_DONE
RC_UNKNOWN_SESSION_POINTER
RC_UNKNOWN_INDEX_NAME
RC_DATASTREAM_SYNTAX_ERROR
RC_REQUEST_IN_PROGRESS
RC_UNEXPECTED_ERROR
RC_INDEX_ALREADY_OPENED
RC_MAX_NUMBER_OF_OPEN_INDEXES
RC_SERVER_NOT_AVAILABLE
RC_SERVER_BUSY
RC_SERVER_CONNECTION_LOST
RC_INDEX_NOT_ACCESSIBLE
RC_NOT_ENOUGH_MEMORY
RC_COMMUNICATION_PROBLEM
RC_IO_PROBLEM
RC_WRITE_TO_DISK_ERROR

See “Appendix A. The API return codes” on page 191 for more information
about these codes.

OpenIndex

Chapter 5. Calling the API functions 113

Data stream syntax

Index name

<< ll XNAM A index_name <@

The data stream item is:

XNAM
Specifies the name of the index to be opened. It must be one of the names
returned by the EhwListIndexes function for the current session.

Usage
You can open the same index only once per session.

Example
This is an example of an EhwOpenIndex function call:

/*---*/
/* Call API function to open the information-retrieval index */
/*---*/
ulReturnCode =
EhwOpenIndex (pSession, /* In -- session pointer */

ulDataLength, /* In -- data stream length */
pDataStream, /* In -- index name */
&ulIndexHandle, /* Out -- index handle */
&ulDiagnosisInfo); /* Out -- diagnosis info. */

if (ulReturnCode != RC_DONE) /* check the API return code */
{

/* handle the function error */
} /* endif API call failed */
/*---*/

The area pointed to by pDataStream could contain the following data stream, and
ulDataLength would have a value of 13.

Symbolic notation Hexadecimal representation

13 XNAM A EHWINDEX 000D 003C C1 454857494E444558

OpenIndex

114 Text Search: Programming the Text Search Engine

EhwRank
This function assigns a relevance value to each document of a result. The value
indicates how relevant the document is to the query that produced the result. It is
based on factors such as the number of search terms found in the document in
relation to the number of documents. The relevance value is relative; that is, it
indicates how relevant the document is in relation to the other found documents.

Input parameters
session pointer

Identifies the information-retrieval session. It is the pointer returned by
EhwStartSession when you start a session.

result handle
Identifies the search result to apply ranking to. It is the handle returned by an
EhwSearch call.

Output parameters
diagnosis information

There is no diagnosis information returned for this call.

return code
The following return code values can be returned with this call:

RC_DONE
RC_EMPTY_LIST
RC_UNKNOWN_SESSION_POINTER
RC_INCORRECT_HANDLE
RC_UNEXPECTED_ERROR
RC_NO_RANKING_DATA_AVAILABLE
RC_NOT_ENOUGH_MEMORY
RC_RESULT_ALREADY_RANKED

See “Appendix A. The API return codes” on page 191 for more information
about these codes.

Usage
There is no output from EhwRank. Ranking applies to a search result including
document data, index data, and query data. The relevance value depends on the
structure of the query, the frequency of terms within a document, the size of
documents, and the number of documents a term occurs in.

EhwRank assigns a relevance value to individual documents. To sort the list of
documents according to this value, run EhwCreateResultView, followed by EhwSort.
A relevance value is an unsigned char from hex 0 to hex 64. Note that a result can
be ranked only if the RANK processing condition was used for the corresponding
EhwSearch call. Otherwise, the EhwRank function will return an
RC_NO_RANKING_DATA_AVAILABLE return code.

The next two sections explain the ranking methods used for Boolean and free-text
or hybrid queries.

Boolean queries
For Boolean queries, the following ranking method is used to assign a relevance
value to a document of a result:

Rank

Chapter 5. Calling the API functions 115

1. Single word search terms contribute to a document’s relevance value through
the ratio of their occurrence frequency to the number of documents they occur
in.

This implies the following:

a. Frequent occurrence of a search term increases a document’s relevance
value.

b. The fewer documents are found for a term, the more relevant is a document
the term occurs in.

c. A more restrictive query expression usually contributes more to the
relevance value of a document than a less restrictive one.

2. Different queries with logically the same content can produce the same or a
very similar rank sequence for the same document collection. For example,
(term1 OR term2) AND term3 is logically equivalent to (term1 AND term3) OR
(term2 AND term3) and therefore produces the same, or nearly the same, rank
sequence.

3. The more synonyms there are, the less each of them adds to the relevance
value. So the sum of the single relevance values of synonyms of a term is less
than or equal to the relevance value of the term itself.

Note that it is only the ordering of relevance values that remains stable for logically
equivalent queries, not necessarily the values themselves.

Furthermore, relevance values and relevance orderings obtained from different
indexes cannot be compared. Therefore, different applications of EhwSearch
against different indexes or index groups usually produce results that cannot be
sorted by relevance value or merged according to relevance ordering. However,
relevance values obtained from one cross-index search can be compared across
indexes, of course, because in that case the index group is treated as a single
index. Note that even when relevance ordering or values cannot be used, the
so-called rank count can, because this is a sum of matches over documents that is
independent both from query structure and the index content.

Free-text and hybrid queries
A query containing both a Boolean query and a free-text argument is called a hybrid
query. For free-text and hybrid queries, a relevance value is assigned to each
document that contains at least one of the nonstopwords in the free-text argument.

Words that occur close to each other in the text form lexical affinities. The more
often a document contains an individual word or a lexical affinity, the higher the
relevance value. Terms that are rare in the collection of documents as a whole are
scored higher than common terms. Scores greater than, say, 85 generally indicate
very good matches; scores less than about 15 generally indicate poor matches.

The result of a hybrid query is ranked according to the ranking scheme of the
free-text part of the query only.

Example
This is an example of an EhwRank function call:

/*---*/
/* call API function EhwRank */
/*---*/

ulReturnCode =
EhwRank (

pSession, /* In -- session pointer */
ulResultHandle, /* In -- result handle */

Rank

116 Text Search: Programming the Text Search Engine

&ulDiagnosisInfo);/* Out -- diagnosis info. */
/* check the API return code */

if (ulReturnCode != RC_DONE)
{

/* handle the function error */
} /* endif API call failed */

/*---*/

Rank

Chapter 5. Calling the API functions 117

EhwReorgIndex
The reorganization function removes obsolete information from the index, and
compresses the information to improve storage utilization and performance. For
details on why and when an index should be reorganized, refer to “Improving
performance and the use of storage” on page 25.

Input parameters
session pointer

Identifies the information-retrieval session. It is the pointer returned by
EhwStartSession when you start a session.

index handle
Identifies the information-retrieval index to be reorganized. It is the handle
returned by EhwOpenIndex when the index is opened.

Output parameters
diagnosis information

There is no diagnosis information returned for this call.

return code
The following return code values can be returned with this call:

RC_DONE
RC_UNKNOWN_SESSION_POINTER
RC_INCORRECT_HANDLE
RC_REQUEST_IN_PROGRESS
RC_INCORRECT_AUTHENTICATION (Text Search Engine for AIX only)
RC_UNEXPECTED_ERROR
RC_SERVER_NOT_AVAILABLE
RC_SERVER_BUSY
RC_SERVER_CONNECTION_LOST
RC_CONFLICTING_TASK_RUNNING
RC_NOT_ENOUGH_MEMORY
RC_NO_ACTION_TAKEN
RC_FUNCTION_DISABLED
RC_FUNCTION_IN_ERROR
RC_COMMUNICATION_PROBLEM
RC_IO_PROBLEM
RC_WRITE_TO_DISK_ERROR
RC_MAX_NUMBER_OF_TASKS
RC_GTR_ERROR

See “Appendix A. The API return codes” on page 191 for more information
about these codes.

Usage
EhwReorgIndex starts the reorganization of the specified information-retrieval index.
After checking whether the index can be reorganized and setting up the
reorganization process, EhwReorgIndex returns control to your application. The
return code RC_DONE signals that the reorganization task has been started
successfully; your application is not notified when and if this task has completed.
Use EhwGetIndexFunctionStatus to check for the correct processing of
administration tasks. If EhwGetIndexFunctionStatus returns an error code, refer to
“Appendix B. Error codes returned by GetIndexingMsgs and
GetIndexFunctionStatus” on page 207.

ReorgIndex

118 Text Search: Programming the Text Search Engine

Example
This is an example of an EhwReorgIndex function call:

/*---*/
/* Call EhwReorgIndex to start a reorganize index task */
/*---*/
ulReturnCode =
EhwReorgIndex (pSession, /* In -- session pointer */

ulIndexHandle, /* In -- index handle */
pulDiagnosisInfo); /* Out -- diagnosis info */

if (ulReturnCode != RC_DONE) /* check the API return code */
{

/* distinguish the code types */
/*--*/
/* no error code: */
/* case RC_NO_ACTION_TAKEN: no active secondary index */
/* ... */
/* case RC_CONFLICTING_TASK_RUNNING: */
/* active update | reorg. task */
/* ... */
/* case RC_FUNCTION_DISABLED: update function is disabled */
/* ... */
/* continue with processing */
/*--*/
/* function error: */
/* case RC_UNEXPECTED_ERROR: */
/* case RC_SERVER_BUSY: */
/* case RC_SERVER_CONNECTION_LOST: */
/* case RC_COMMUNICATION_PROBLEM: */
/* case RC_NOT_ENOUGH_MEMORY: */
/* case RC_FUNCTION_IN_ERROR: */
/* case RC_IO_PROBLEM: */
/* case RC_WRITE_TO_DISK_ERROR: */
/* handle the function error */
/* ... */
/* stop processing / return */
/*--*/
/* default: application error: */
/* handle the internal error */
/* ... */
/* stop processing / return */
/*--*/

} /* endif API return code > 0 */
/*---*/

ReorgIndex

Chapter 5. Calling the API functions 119

EhwResumeIndex
This function resumes a suspended information-retrieval index so that it can be
opened.

Input parameters
session pointer

Identifies the information-retrieval session. It is the pointer returned by
EhwStartSession when you start a session.

data stream length
The length, in bytes, of the data contained in the index name parameter.

index name
Specifies the information-retrieval index to be resumed. This parameter is
supplied in a data stream format (see “Data stream syntax” on page 121).

Output parameters
diagnosis information

There is no diagnosis information returned for this call.

return code
The following return code values can be returned with this call:

RC_DONE
RC_UNKNOWN_SESSION_POINTER
RC_UNKNOWN_INDEX_NAME
RC_DATASTREAM_SYNTAX_ERROR
RC_REQUEST_IN_PROGRESS
RC_INCORRECT_AUTHENTICATION (Text Search Engine for AIX only)
RC_UNEXPECTED_ERROR
RC_SERVER_NOT_AVAILABLE
RC_SERVER_BUSY
RC_SERVER_CONNECTION_LOST
RC_INDEX_NOT_ACCESSIBLE
RC_NOT_ENOUGH_MEMORY
RC_NO_ACTION_TAKEN
RC_COMMUNICATION_PROBLEM
RC_IO_PROBLEM
RC_WRITE_TO_DISK_ERROR

See “Appendix A. The API return codes” on page 191 for more information
about these codes.

ResumeIndex

120 Text Search: Programming the Text Search Engine

Data stream syntax

Index name

<< ll XNAM A index_name <@

The data stream item is:

XNAM
Specifies the name of the index to be resumed. It must be one of the names
returned by the EhwListIndexes function for the current session.

Usage
The EhwResumeIndex function cancels the effect of a previous EhwSuspendIndex
function call.

Example
This is an example of an EhwResumeIndex function call:

/*---*/
/* Call API function to resume the information-retrieval index */
/*---*/
ulReturnCode =
EhwResumeIndex (pSession, /* In -- session pointer */

ulDataLength, /* In -- data stream length */
pDataStream, /* In -- index name */
&ulDiagnosisInfo); /* Out -- diagnosis info. */

if (ulReturnCode != RC_DONE) /* check the API return code */
{

/* handle the function error */
} /* endif API call failed */
/*---*/

The area pointed to by pDataStream could contain the following data stream, and
ulDataLength would have a value of 12.

Symbolic notation Hexadecimal representation

12 XNAM A INDEX07 000C 003C C1 494E4445583037

ResumeIndex

Chapter 5. Calling the API functions 121

EhwScheduleDocument
This function schedules documents for indexing or for deletion from an
information-retrieval index.

Input parameters
session pointer

Identifies the information-retrieval session. It is the pointer returned by
EhwStartSession when you start a session.

index handle
Identifies the information-retrieval index to which you want to add, or from which
you want to delete, documents. It is the handle returned by EhwOpenIndex
when the index is opened.

data stream length
The length, in bytes, of the data contained in the scheduling list parameter.

scheduling list
Lists the documents to be scheduled and specifies whether they are to be
added to the index or deleted from the index. This parameter is supplied in a
data stream format (see “Data stream syntax” on page 123).

Output parameters
diagnosis information

There is no diagnosis information returned for this call.

return code
The following return code values can be returned with this call:

RC_DONE
RC_UNKNOWN_SESSION_POINTER
RC_INCORRECT_HANDLE
RC_DATASTREAM_SYNTAX_ERROR
RC_REQUEST_IN_PROGRESS
RC_UNEXPECTED_ERROR
RC_SERVER_NOT_AVAILABLE
RC_SERVER_BUSY
RC_SERVER_CONNECTION_LOST
RC_NOT_ENOUGH_MEMORY
RC_FUNCTION_DISABLED
RC_FUNCTION_IN_ERROR
RC_COMMUNICATION_PROBLEM
RC_IO_PROBLEM
RC_WRITE_TO_DISK_ERROR

See “Appendix A. The API return codes” on page 191 for more information
about these codes.

ScheduleDocument

122 Text Search: Programming the Text Search Engine

Data stream syntax

Scheduling list

<< ? ll ADD A document_identifier
ll REM A document_identifier

<@

The data stream items are:

ADD
Specifies a document to be indexed or re-indexed. The request is scheduled
(see “Usage”) and is later processed as follows:

v If the specified document exists and can be accessed by the Text Search
Engine server, its indexing information is added to the specified index.

v If the index already contains indexing information for this particular document,
the existing information is replaced.

v If the specified document does not exist or cannot be accessed by the Text
Search Engine server, the request is ignored.

REM
Specifies a document whose indexing information is to be removed from the
specified information-retrieval index. The request is scheduled (see “Usage”)
and is later processed as follows:

v If the index contains indexing information for this particular document, it is
removed.

v If the index does not contain indexing information for this particular
document, the request is ignored.

Usage
This function puts the ADD or REM requests into an indexing queue that is
maintained for each information-retrieval index. The actual indexing of documents
and modification of the information-retrieval index take place when the
EhwUpdateIndex function is processed.

When you specify several ADD and REM requests in a single
EhwScheduleDocument call, either all the requests are scheduled (return code
RC_DONE) or none of the requests are scheduled (all other return codes).

Example
This is an example of an EhwScheduleDocument function call:

/*---*/
/* Issue an API function call to schedule the documents */
/*---*/
ulReturnCode = EhwScheduleDocument

(
pSession, /* In -- session pointer */
ulIndexHandle, /* In -- index handle */
ulDataLength, /* In -- data stream length */
pDataStream, /* In -- scheduling list */
pulDiagnosisInfo /* Out -- diagnosis info */
);

if (ulReturnCode != RC_DONE) /* check the API return code */

ScheduleDocument

Chapter 5. Calling the API functions 123

{
/* handle the function error */

} /* endif API call failed */
/*---*/

The area pointed to by pDataStream could contain the following data stream, and
ulDataLength would have a value of 217.

Here is an example datastream for scheduling documents in MVS™ datasets:

Symbolic notation Hexadecimal representation

31 ADD A \\NOE002\DATA\ 001F 01FE C1 5C5C4E...
NEWS1020.DOC

31 ADD A \\NOE002\DATA\ 001F 01FE C1 5C5C4E...
NEWS0207.DOC

31 ADD A \\NOE002\DATA\ 001F 01FE C1 5C5C4E...
NEWS1022.DOC

31 ADD A \\NOE002\DATA\ 001F 01FE C1 5C5C4E...
NEWS1030.DOC

31 REM A \\NOE007\DATA\ 001F 0208 C1 5C5C4E...
NEWS2259.DOC

31 REM A \\NOE099\LIB2\ 001F 0208 C1 5C5C4E...
PLATFORM.DOC

31 ADD A \\NOE002\DATA\ 001F 01FE C1 5C5C4E...
NEWS1021.DOC

29 ADD A \\'SYS1.PARMLIB (MEMBER)'

ScheduleDocument

124 Text Search: Programming the Text Search Engine

EhwSearch
This function searches for the information that you specify in the query parameter. It
searches either in one information-retrieval index or in multiple indexes belonging to
an index group created by EhwCreateIndexGroup. For an index group, the query
scope information has to be supplied separately by EhwAddQueryScope.

If your query contains a free-text argument in addition to, or instead of, a Boolean
query, you get a result per index.

This means that free-text rank values for documents are calculated for each index;
a document contained in two indexes may show different rank values. Note,
however, that ranking across several indexes is supported for Boolean queries.

Input parameters
session pointer

Identifies the information-retrieval session. It is the pointer returned by
EhwStartSession when you start a session.

index handle or index group handle
Identifies the handle of the index or index group to be searched.

v index handle identifies the information-retrieval index to search. It is the
handle returned by EhwOpenIndex when the index is opened.

v index group handle is the handle returned by EhwCreateIndexGroup.

data stream length
The length, in bytes, of the data contained in the query parameter.

query
The information that you want to find, and the criteria for finding it. This
parameter is supplied in a data stream format (see “Data stream syntax” on
page 126).

Output parameters
result handle

Identifies the search result, that is, the set of documents found that comply with
the query specifications. The result handle is an input parameter in function
calls that list or delete the search result. It is also an input parameter for
CreateResultView which creates a view on the search result.

result size
The number of documents found with this search request. If the result size is
zero, no result handle is normally returned. If, however, the result size is zero
and the search was done on multiple indexes (cross-index search),
RC_INDEX_GROUP_SEARCH_ERROR is returned if one or more of the
indexes did not contribute to the result (index-specific error or index disabled or
index suspended). In that case, a result handle is returned so that
EhwGetProblemInfo can be called.

diagnosis information
Returned only with the return code RC_DATASTREAM_SYNTAX_ERROR. It
contains an offset value that points to a data stream item in the query
parameter that caused the error. For example, the item may be out of
sequence, it may have an unknown identifier or type, or it may contain an
invalid value.

Search

Chapter 5. Calling the API functions 125

return code
The following return code values can be returned with this call:

RC_DONE
RC_DICTIONARY_NOT_FOUND
RC_STOPWORD_IGNORED
RC_UNKNOWN_SESSION_POINTER
RC_INCORRECT_HANDLE
RC_CCS_NOT_SUPPORTED
RC_LANGUAGE_NOT_SUPPORTED
RC_CONFLICT_WITH_INDEX_TYPE
RC_INVALID_MASKING_SYMBOL
RC_DATASTREAM_SYNTAX_ERROR
RC_QUERY_TOO_COMPLEX
RC_PROCESSING_LIMIT_EXCEEDED
RC_INDEX_GROUP_SEARCH_ERROR
RC_INDEX_SPECIFIC_ERROR
RC_REQUEST_IN_PROGRESS
RC_UNEXPECTED_ERROR
RC_MAX_NUMBER_OF_RESULTS
RC_SERVER_NOT_AVAILABLE
RC_SERVER_BUSY
RC_SERVER_CONNECTION_LOST
RC_NOT_ENOUGH_MEMORY
RC_EMPTY_QUERY
RC_EMPTY_INDEX
RC_FUNCTION_DISABLED
RC_FUNCTION_IN_ERROR
RC_INSTALLATION_PROBLEM
RC_COMMUNICATION_PROBLEM
RC_IO_PROBLEM
RC_WRITE_TO_DISK_ERROR
RC_GTR_ERROR
RC_CONFLICT_WITH_INDEX_TYPE
RC_UNKNOWN_SECTION_NAME
RC_DOCMOD_READ_PROBLEM

See “Appendix A. The API return codes” on page 191 for more information
about these codes.

Data stream syntax
In a query, you specify criteria for searching the textual content of indexed
documents. The search criteria can contain a Boolean query, or a free-text
argument or both. If both a Boolean query and a free-text argument are specified,
the Boolean query must be specified first. The Boolean query and the free-text
argument are implicitly connected by an AND operator.

You can connect several text criteria within a Boolean query using the Boolean
operators AND and OR. EhwSearch supports full Boolean search on all index types.
In addition, queries requesting documents to contain search terms in a specified
proximity are supported.

Search terms can be expanded using synonyms, or thesaurus terms. For Ngram
indexes, search terms can be requested to match document text within a certain
threshold. You can also specify processing conditions to cancel long-running
queries or to truncate large results and a query scope to restrict the search to a
group of indexed documents.

Search

126 Text Search: Programming the Text Search Engine

For a cross-index search, you must supply the complete query scope separately
using EhwAddQueryScope. These scope settings are valid only for the duration of a
search.

You must specify the CCSID and national language of search terms in the query.
These are the default values for all search terms in the query. Each search term
can be specified to have its own CCSID and national language.

For queries on an Ngram index, the CCSID must be the same as the one the index
was created for.

Note that some options are not supported if your query contains a free-text
argument or if a search is to be performed on an Ngram index. See the description
of these parameters.

Query input parameter
Here is the data stream syntax for the query input parameter:

<< Global defaults
Processing conditions

<

< Boolean query
Free-text argument

Free-text argument

<@

The “Processing conditions” let you specify how the query should be processed.
The “Global defaults” on page 128 define the default settings used for processing
the query. Some of these values may be overwritten by local settings. The “Boolean
query” on page 129 lets you construct queries using full Boolean operations. The
“Free-text argument” on page 136 lets you make a query in natural language. A
free-text query processes the words in the query and finds the best-matching
documents. It does not require all the words to occur in a found document, but the
rank value it returns corresponds to the number of hits.

Processing conditions

07 TLIM A proc_time 07 RLIM A result_size
Query scope

05 RANK A

Query scope:

05 QSS S ?

?

ll DID A document_identifier

ll DGID A document_group_id

05 QSS E

For the positioning of processing conditions, see “Query input parameter”.

Search

Chapter 5. Calling the API functions 127

The data stream items are:

TLIM
Specifies the maximum processing time of the Text Search Engine server for a
Boolean query or the Boolean part of a hybrid query. For a free-text-only query
the TLIM processing condition has no effect. The same applies to search
requests on an Ngram index. If the maximum processing time is exceeded, the
search request is canceled, and no search result is built.

The processing time is specified in seconds as a 2-byte binary value in
big-endian format. The value can be from 1 to 1440.

RLIM
Specifies the maximum result size for this search request. The result size is a
2-byte binary value in big-endian format. The value can be from 1 to 32767.

If the maximum result size is exceeded for a Boolean query, the number of
documents as specified with the RLIM parameter are returned. For Boolean
searches, the qualifying documents are in random order. They are not the
subset yielding the highest rank scores. For cross-index search, RLIM is applied
for each index; that is, the effective count of returned documents may be the
number of indexes times RLIM.

If the maximum result size is exceeded for a query containing a free-text
argument, the number of documents as specified with the RLIM parameter are
returned. These documents have the highest rank scores.

The default RLIM value for a free-text or hybrid query is 50.

RANK
This flag requests that ranking data is provided by the server. The EhwRank
function can be used only on results that have been produced by a query in
which the flag was set.

QSS
Delimits the scope of the query. If you specify a query scope, the search result
is limited to the set of documents defined by the scope. The query scope is
either a list of document identifiers or a list of document group identifiers.

DID
Specifies the identifier of a document that is indexed in the information-retrieval
index to be searched.

DGID
Specifies a document group identifier, such as a directory name in a UNIX file
system.

Note: The specification of document groups as a query scope assumes the
naming conventions of file systems where document identifiers (fully
qualified file names) always start with the document group identifier
(subdirectory name). You should not use this feature with library systems
that have different naming conventions.

Global defaults

ll THESNAME A thesaurus_name 07 THESDEPTH A expansion_depth
<

Search

128 Text Search: Programming the Text Search Engine

< 07 CCSID A coded_character_set_id 07 LANG A language_identifier

For the positioning of global defaults, see “Query input parameter” on page 127.

The data stream items are:

THESNAME
Specifies the name of a thesaurus dictionary which is to be used to expand
query terms. The default for the thesaurus name is imothes for indexes of type
XTYP_LINGUISTIC and XTYP_PRECISE. For Ngram indexes, the default for
the thesaurus name is imonthes. The default path is the servers resource
directory as specified at installation. The language used for imothes and
imonthes is English.

The sample thesauri are not considered as appropriate for a real search
application. A search application can generate its own default thesaurus in the
resource directory by using the same name. You can define your own thesauri.
To be able to use them in a search application, you have to compile them using
one of the thesaurus compilers provided. Refer to “Thesaurus concepts” on
page 10 for definition formats and use of the thesaurus compilers. If the
thesaurus name is fully qualified, the file must be available on the server
machine.

THESDEPTH
Specifies the depth which is to be used for query expansion by looking for
matches in the thesaurus. Actual expansion of the query is requested by using
the THES keyword for each search term. The default for depth is 1.

CCSID
Specifies the SAA Coded Character Set Identifier for the search terms in the
current query except those search terms that have their own CCSID item. File
IMOLANG.H, provided with Text Search Engine, defines symbolic names for the
CCSIDs that are supported by Text Search Engine.

Do not use a CCSID that specifies a Unicode code page.

The 2-byte binary value must be specified in big-endian format.

For a search on an Ngram index, the CCSID must be the same as the one the
index was created for.

LANG
Specifies the language identifier for the search terms in the current query,
except those search terms that have their own LANG item. File IMOLANG.H,
provided with Text Search Engine, defines symbolic names for the language
identifiers that are supported by Text Search Engine. The 2-byte binary value
must be specified in big-endian format.

Boolean query

<< ?

05 AND A or 05 LOR A (note 1)

Query body
05 SUBQ S 05 SUBQ E

<@

Search

Chapter 5. Calling the API functions 129

Query body:

Text criterion
Document sections

Boolean query

Notes:

1. If you want to use several subqueries, connect them using the Boolean operator
05 AND A or the Boolean operator 05 OR A .

The data stream items are:

AND

LOR
You can use these Boolean operators to connect several result subsets in a
query.

If several Boolean operators are specified in a query, they are processed as
follows: AND before LOR, left to right. To change the order of processing, use
subquery notation: Boolean operators within subqueries are evaluated first.

SUBQ
Delimits the start and end of a subquery. Use a subquery to change the default
order of processing for the Boolean operators in a query.

For positioning of Boolean query, see “Query input parameter” on page 127. More
complex data stream items are“Document sections” and “Text criterion” on
page 132.

Document sections

07 CCSID A coded_cs_id 06 RCM A req_char_mask
<

<
06 CSM A char_seq_mask

<

< ? Section list
ll DOCMOD A document_model_name

Section list:

05 SECLST S ? ll SECNAM A section_name 05 SECLST E

For the positioning of Document sections, see “Boolean query” on page 129 or
“Free-text argument” on page 136.

Search

130 Text Search: Programming the Text Search Engine

The data stream items are:

CCSID
CCSID encoding of the subsequent strings for document model and section
name. If a CCSID is not specified, the global default for CCSID is used.

RCM
Defines the SBCS masking symbol for a single required character used in the
section name list or the document model name.

CSM
Defines the SBCS masking symbol for a sequence of optional characters or for
a single optional word used in the section names list or the document model
name.

DOCMOD
The name of the model that the section names list (see SECLST) is defined for.
Regardless of the CCSID value, valid input characters for these strings are
restricted to the range A-Z, a-z, 0-9.

If you do not specify the name of a document model, the default document
model for the index is used.

SECLST
Delimits a list of section names. For Ngram indexes, only one entry is allowed
in this list.

SECNAM

The name of the section as defined in the model definition file. The name must
be valid for the model specified for this list. If the query is processed on multiple
indexes then each index must support the model and section names specified
in this list. Regardless of the CCSID value, valid input characters for the strings
specifying section data are restricted to the range of A-Z, a-z, 0-9.

If multiple section names of attribute sections are specified (explicitly or by
using wildcards), all sections in the list must be of the same type.

Syntax for section qualification: For documents in XML format, you can use a
different syntax for formulating section specifications. This implies a set of shortcut
notations based on the nesting levels of the document model.

For this purpose, in the section name list, use the special character ″/″ as a nesting
level delimiter, and use ″..″ to require elements to be skipped.

Using this syntax assumes that section names (see “EhwCreateDocumentModel” on
page 49) are synchronized to the nesting structure of elements defined for the XML
document. This means that full ″path qualifiers″ as used for navigation in an XML
document must have been used for the definition of section names.

In addition, the name of the XML root element must match the name of the
document model and the name of the root section name.

So input for the section list can consist of:

/ This represents the root element of an XML document. The query will look
for text criterion in all document sections.

/elementName1/elementName2/.../elementNameX
This represents the element elementNameX somewhere in the navigational
chain below rootElement/elementName1/elementName2. The number of
elements specified before ″..″ can be any integer value starting from 1.

Search

Chapter 5. Calling the API functions 131

//elementNameX
This represents any element named elementNameX somewhere below the
rootElement. ″//″ thus is a place holder for zero or more elements.

/elementName1//elementNameX
This represents any element named elementNameX somewhere in the
navigational chain below rootElement/elementName1. Again, ″//″ is a place
holder for zero or more elements.

Text criterion

<<

?

?

?

Search argument
05 EXCL A Search argument

05 DOCP S Search argument 05 DOCP E

05 PARP S Search argument 05 PARP E

05 SENP S Search argument 05 SENP E

<@

For the positioning of text criterion, see “Boolean query” on page 129. A more
complex data stream item is “Search argument”, which itself consists of one or
more search terms.

The most simple text criterion consists of only one search argument.

The data stream items are:

EXCL
Expresses the Boolean operator NOT. You can use it to find the documents that
do not contain the specified search argument.

DOCP
Delimits a document proximity criterion. This is a sequence of two or more
search arguments to be found within the same document.

PARP
Delimits a paragraph proximity criterion. This is a sequence of two or more
search arguments to be found within the same paragraph of a document.

SENP
Delimits a sentence proximity criterion. This is a sequence of two or more
search arguments to be found within the same sentence of a document.

Search argument

<< 05 SARG S ? Search term 05 SARG E <@

Search

132 Text Search: Programming the Text Search Engine

Search term:

07 CCSID A coded_cs_id 07 LANG A language_id
<

<
Mask settings
Expansion qualifiers
05 SUBT A

Precision qualifiers
<

< ll TERM A word_or_phrase

For the positioning of search argument see “Text criterion” on page 132. You can
also ask for query enhancement of each search term by using mask settings,
expansion qualifiers, or precision qualifiers.

The most simple search argument consists of one search term. The most simple
search term consists of one phrase or word. See the example for the datastream
syntax of the most simple Boolean query.

The data stream items are:

SARG
Delimits the search argument. The SARG start and end items are required
because you can specify several search terms in a single search argument.
Where there are several search terms, they are treated as synonyms. That is, if
any one of them is found in a document, the search argument is considered as
met.

CCSID
Specifies the SAA Coded Character Set Identifier for the current search term.
File IMOLANG.H, provided with Text Search Engine, defines symbolic names
for the CCSIDs that are supported by Text Search Engine. The 2-byte binary
value must be specified in big-endian format.

Note that for searches on Ngram indexes, there is no choice of using a CCSID
other than the one the index was built for. Specification of CCSID on a per
search term base is ignored. Since supported CCSIDs for DBCS are combined
code pages, queries on an Ngram index can contain sequences of SBCS
characters.

LANG
Specifies the language identifier for the current search term. File IMOLANG.H,
provided with Text Search Engine, defines symbolic names for the language
identifiers that are supported by Text Search Engine. The 2-byte binary value
must be specified in big-endian format.

SUBT
This flag is not for use with Ngram indexes. It requests that the search term is a
subterm of the first search term to its left (within the same search argument),
that is not a subterm.

Use this flag to characterize terms that have lower relevance for ranking than a
search term they are semantically related to.

Search

Chapter 5. Calling the API functions 133

TERM
Specifies the search term to be compared to the textual content of the indexed
documents. This search term must contain text characters in the coded
character set specified in the CCSID item. It can also contain masking symbols
defined with RCM or CSM items.

The search term is scanned to determine the complete words and the masked
words. Scanning, the distinction of valid alphanumeric characters and word
separators or punctuation marks, is based on the language specified with the
LANG item.

Complete words within a search term are then normalized according to the
rules established for text in the specific national language or via the index type.

If requested, expansions of words in the search terms are added.

Mask settings

06 RCM A req_char_mask 06 CSM A char_seq_mask

For the positioning of mask settings, see “Search argument” on page 132. See
“Example” on page 137 for examples of using masking symbols.

You can define several masking symbols (“wild-card” characters) for use in the
current search term.

The datastream items are:

RCM
Defines the SBCS masking symbol for a single required character.

CSM
Defines the SBCS masking symbol for a sequence of optional characters or for
a single optional word.

The masking symbols must be defined for each search term in which they are used.
Each symbol must be a single character in the CCSID used for the search term. If
both masking symbols (RCM and CSM) are specified in one search term, these
symbols must be different.

For Ngram indexes:
v Only SBCS symbol characters, but no alphanumerical characters, are allowed as

masking characters.
v Mask characters can only be specified adjacent to alphabetic characters.

Masking for nonalphabetic characters is not supported.

Expansion qualifiers

05 SYN A
ll THES A

relation_name
05 SOUND A
05 INFLECT A

Search

134 Text Search: Programming the Text Search Engine

For the positioning of expansion qualifiers, see “Search argument” on page 132 or
“Free-text argument” on page 136.

Note that for Ngram indexes, only the THES qualifier is supported. Masking is not
allowed for search terms that are to be expanded.

SYN
An option that requests to search also for the synonyms of the current search
term. Text Search Engine uses the synonyms defined in the language dictionary
on the server workstation.

THES
An option that requests to search also for thesaurus expansions of the current
search term. Do not use an arbitrary phrase for a thesaurus search term. Use
only thesaurus search terms that are likely to be found in the thesaurus
dictionary, that is, single words or multiword terms like “national security”. The
search engine looks for thesaurus terms either in the file defined by the global
default keyword THESNAME or in the default file imothes for indexes of type
XTYP_LINGUISTIC and XTYP_PRECISE, or in the default file imonthes for
Ngram indexes.

If relation_name is specified, query expansion by thesaurus is done along
branches of the named relation. If no value is specified, all branches are taken
into account for query expansion.

For an Ngram index, relation_name must be one of the following strings, where
<n> is a number from 1 to 128:

SYNONYM
RELATED
RELATED<n>

Note that even on systems with DBCS CCSIDs, only the SBCS variant of the
characters can be used for relation_name. Refer to “Relations” on page 11 for
further information on thesaurus relations.

SOUND
An option that requests to search for terms that sound like the specified search
term.

INFLECT
Useful only for indexes of type XTYP_PRECISE or XTYP_PRECISE with the
additional feature XTADD_NORMALIZED. Requests expansion of input search
terms using their lemma forms. For instance, search term lost is expanded to
include lose, losing, loses.

Precision qualifiers

05 NOSEQ A 06 MATCH A level 05 BOUND A
<

<
05 CSENS A 05 ESTEM A

For the positioning of precision qualifiers, see “Search argument” on page 132.

The datastream items are:

Search

Chapter 5. Calling the API functions 135

NOSEQ
Requests that words in the current search term can occur in any sequence in a
single sentence in the document text.

If not specified, words in the current search term must occur in exactly the
same sequence in a single sentence in the document text.

NOSEQ cannot be specified for search terms in an EXCL text criterion or for
searches on an Ngram index.

The following qualifiers are valid for Ngram indexes only.

MATCH
Specifies the degree of similarity requested for the search term. If you do not
specify a MATCH level, then a search is made for an exact match. If you do
specify a MATCH level, a search is made for a less-than-exact match. Valid
values of level are hexadecimal X'01' to X'05', where X'05' is more exact than
X'01'.

The matching level does not apply to the first three characters of a search term.
That means that the first three characters of a search term must always match
exactly.

Note that usage of keyword MATCH excludes usage of masking symbols and
vice versa.

BOUND
Requests search to respect word phrase boundaries. Valid only for Ngram
indexes that were created for Korean CCSID.

CSENS
Requests search to respect case, that is, the search is case-sensitive. This is
valid only for Ngram indexes with the XTADD_CASE_ENABLED option.

ESTEM
Requests to search also for tokens having the same stem as TERM. If TERM is
“compute”, for example, Text Search Engine searches also for “computing”,
“computed”, “computer”, and so on. This is useful only if TERM is an English
term.

Free-text argument

<<
Document sections

05 FARG S Search term 05 FARG E <@

Search term:

07 CCSID A coded_cs_id 07 LANG A language_id
<

<
Expansion qualifiers

ll FTERM A word_or_phrase

Free-text search is not supported for Ngram indexes.

The datastream items are:

Search

136 Text Search: Programming the Text Search Engine

FARG
Delimits the free-text search argument. Only one free-text search argument per
query and one search string per free-text argument is allowed. If a free-text
search argument is preceded by a Boolean query, the result of such a
combined Boolean and free-text query is a subset of the result of the Boolean
part of the query. In other words, the Boolean and free-text part of a query are
always (implicitly) combined by an AND operator.

CCSID
Specifies the SAA Coded Character Set Identifier for the current search string.
File IMOLANG.H, provided with Text Search Engine, defines symbolic names
for the CCSIDs that are supported by Text Search Engine. The 2-byte binary
value must be specified in big-endian format.

LANG
Specifies the language identifier for the current search string. File IMOLANG.H,
provided with Text Search Engine, defines symbolic names for the language
identifiers that are supported by Text Search Engine. The 2-byte binary value
must be specified in big-endian format.

Expansion qualifiers
The following keywords are supported:

SYN
THES
INFLECT

FTERM
Specifies the actual free-text query which can be single words, phrases or even
whole sentences. If FTERM contains several words (for example, a phrase or a
sentence), in contrast to a Boolean query these words need not occur in this
sequence (adjacent) in a document.

Ranking is calculated using contributions from the individual words in FTERM
and any lexical affinities that are formed. For further details see the description
of the EhwRank function. The search term must contain text characters in the
coded character set specified in the CCSID item.

Note that masking of characters or words is not supported for search strings in
a free-text argument.

The search term is scanned to determine the complete words. Scanning, the
distinction of valid alphanumeric characters and word separators or punctuation
marks, is based on the language specified with the LANG item.

More complex data stream items are “Document sections” on page 130 and
“Expansion qualifiers” on page 134. See “Example” for an example of the
datastream syntax for a simple free-text query.

Example

Data stream for the simplest Boolean query

<< 07 CCSID A coded_character_set_id 07 LANG A language_identifier <

< 05 SARG S ll TERM A word-or-phrase 05 SARG E <@

See “Boolean query” on page 129 for enhanced syntax.

Search

Chapter 5. Calling the API functions 137

Data stream for the simplest free-text query

<< 07 CCSID A coded_character_set_id 07 LANG A language_identifier <

< 05 FARG S ll FTERM A word-or-phrase 05 FARG E <@

See “Free-text argument” on page 136 for enhanced syntax.

An example of an EhwSearch function call
/*---*/
/* issue an API function call to start a search */
/*---*/
ulReturnCode =
EhwSearch (pSession, /* In -- session pointer */

ulIndexHandle, /* In -- index handle */
ulDataLength, /* In -- data stream length */
pDataStream, /* In -- query */
&ulResultHandle, /* Out -- result handle */
&ulResultSize, /* Out -- result size */
&ulDiagnosisInfo); /* Out -- diagnosis info */

if (ulReturnCode != RC_DONE) /* check the API return code */
{ /* handle the function error */
} /* endif API call failed */

if (ulResultSize != 0L) /* check the result size */
{

/* access the result list */
} /* endif result size not zero */
/*---*/

The area pointed to by pDataStream could contain the following data stream, and
ulDataLength would have a value of 128.

Symbolic notation Hexadecimal representation

07 CCSID A CCSID_00819 0007 0073 C1 0333
07 LANG A LANG_ENU 0007 0074 C1 177B
05 SARG S 0005 00C8 E2
20 TERM A computer system 0014 00D3 C1 636F6D...
05 SARG E 0005 00C8 C5
05 AND A 0005 0082 C1
05 SARG S 0005 00C8 E2
06 RCM A % 0006 0168 C1 25
06 CSM A * 0006 015E C1 2A
05 NOSEQ A 0006 00E5 C1
19 TERM A A%me Computers 0013 00D3 C1 41256D...
06 RCM A % 0006 0168 C1 25
06 CSM A * 0006 015E C1 2A
05 NOSEQ A 0006 00E5 C1 08
16 TERM A %%rner Bro* 0010 00D3 C1 252572...
05 SARG E 0005 00C8 C5

Search

138 Text Search: Programming the Text Search Engine

EhwSelectResultView
This function forms a new result list from an existing one by selecting members
from the list according to given criteria.

Input parameters
session pointer

Identifies the information-retrieval session. It is the pointer returned by
EhwStartSession when you start a session.

result list handle
Identifies the search result list to base the selection on. It is the handle returned
by EhwCreateResultView or EhwSelectResultView itself.

data stream length
The length, in bytes, of the data contained in the selection criteria parameter.

selection criteria
Specifies the criteria according to which a new result list is selected from the
existing one. The criteria are specified in a data stream format (see “Data
stream syntax” on page 140).

Output parameters
result list handle

Identifies the search result list created by EhwSelectResultView. It is a subset of
the input result list.

result list size
The size of the result list.

diagnosis information
For a return code RC_DATASTREAM_SYNTAX_ERROR, the diagnosis
information contains the offset of the erroneous data stream item.

return code
The following return code values can be returned with this call:

RC_DONE
RC_EMPTY_LIST
RC_UNKNOWN_SESSION_POINTER
RC_INCORRECT_HANDLE
RC_REQUEST_IN_PROGRESS
RC_UNEXPECTED_ERROR
RC_SERVER_NOT_AVAILABLE
RC_SERVER_BUSY
RC_SERVER_CONNECTION_LOST
RC_NO_RANKING_DATA_AVAILABLE
RC_DATASTREAM_SYNTAX_ERROR
RC_NOT_ENOUGH_MEMORY
RC_INDEX_NOT_OPEN
RC_COMMUNICATION_PROBLEM
RC_MAX_NUMBER_OF_INDEXES

See “Appendix A. The API return codes” on page 191 for more information
about these codes.

SelectResultView

Chapter 5. Calling the API functions 139

Data stream syntax

Selection criteria

<< ? ? ll XNAM A index_name
07 TSRT A number_of_top_sorted 05 AND A
06 RNKT A rank_threshold 05 LOR A
07 RCTT A rank_count_threshold

<@

The data stream items are:

TSRT
Number of elements, counted from the beginning of the list, that are to be
selected.

RNKT
A minimum relevance value of a document, where a relevance value is an
unsigned char ranging from 0x00 to 0x64.

RCTT
A minimum rank count of a document. The rank count is the total number of
matches in the document that contributed to term ranking.

AND
All criteria must be met.

LOR
At least one of the criteria must be met.

XNAM
The name of an index that the document is associated with.

Usage
If several indexes are specified, these are always alternatives of each other,
regardless of the AND or LOR operator specified. Each criterion can be specified at
most once, and there must be at least one. If no AND or LOR operator is specified,
then AND is assumed.

A call for EhwSelectResultView is possible only if the preceding search has been
performed with the RANK option.

Selections based on rank count are not possible if the result list was produced for a
query containing a free-text argument.

Selections based on rank value are possible only if EhwRank has run.

Example
This is an example of an EhwSelectResultView function call:

/*---*/
/* Call API function EhwSelectResultView */
/*---*/

ulReturnCode =
EhwSelectResultView (

pSession, /* In -- session pointer */

SelectResultView

140 Text Search: Programming the Text Search Engine

ulResVwHandle, /* In -- result view handle */
ulDataLength, /* In -- data stream length */
pDataStream, /* In -- selection criteria */
&pulResViewHandle,/* Out -- result view handle */
&pulResViewSize, /* Out -- size of result view */
&ulDiagnosisInfo);/* Out -- diagnosis info. */

/* check the API return code */
if (ulReturnCode != RC_DONE)
{

/* handle the function error */
} /* endif API call failed */

/*---*/

The area pointed to by pDataStream could contain the following data stream, and
ulDataLength would then have a value of 54.

Symbolic notation Hexadecimal representation

12 XNAM A INDEX07 000C 003C C1 494E4445583037
12 XNAM A INDEX08 000C 003C C1 494E4445583038
12 XNAM A INDEX09 000C 003C C1 494E4445583039
07 TSRT A 812 0007 026C C1 032C
06 RNKT A 72 0006 0276 C1 48
05 LOR A 0005 008C C1

SelectResultView

Chapter 5. Calling the API functions 141

EhwSetIndexFunctionStatus
This function changes the status of the Text Search Engine search (EhwSearch)
scheduling (EhwScheduleDocument), indexing (EhwUpdateIndex), and index merge
(EhwReorgIndex) functions. Possible actions to change the status are:
v Enable or disable a function
v Reset a function having an error condition.

This function can be used on an index that is opened and not suspended.

Input parameters
session pointer

Identifies the information-retrieval session. It is the pointer returned by
EhwStartSession when you start a session.

index handle
Identifies the information-retrieval index whose function status information is to
be changed. It is the handle returned by EhwOpenIndex when the index is
opened.

function identifier
Identifies the Text Search Engine function whose status is required.

FCT_SEARCH_INDEX
Text Search Engine search function

FCT_SCHEDULE_DOCUMENTS
Schedule documents function

FCT_INDEX_DOCUMENTS
Index documents function

FCT_MERGE_INDEX
Reorganize index function

action id
Identifies the action to be applied to a Text Search Engine function

ACT_ENABLE
Enables a Text Search Engine function so that it can be used

ACT_DISABLE
Disables the use of a Text Search Engine function

ACT_RESET
Resets an error that occurred while a Text Search Engine function was
running. After being reset, the function can be started again.

Output parameters
diagnosis information

There is no diagnosis information returned for this call.

return code
The following return code values can be returned with this call:

RC_DONE
RC_UNKNOWN_SESSION_POINTER
RC_INCORRECT_HANDLE
RC_SERVER_CONNECTION_LOST
RC_REQUEST_IN_PROGRESS
RC_NOT_ENOUGH_MEMORY

SetIndexFunctionStatus

142 Text Search: Programming the Text Search Engine

RC_INDEX_SUSPENDED
RC_MAX_NUMBER_OF_INDEXES
RC_COMMUNICATION_PROBLEM
RC_UNEXPECTED_ERROR

See “Appendix A. The API return codes” on page 191 for more information
about these codes.

Example
This is an example of an EhwSetIndexFunctionStatus call.

/*---*/
/* Call EhwSetIndexFunctionStatus to change the function status */
/*---*/
ulReturnCode =
EhwSetIndexFunctionStatus(/* Set status of a function */

pSession, /* In -- session pointer */
ulIndexHdl, /* In -- index handle */
ulFunctionId, /* In -- function ID */
ulActionId, /* In -- action requested */
&ulDiagInfo); /* Out -- diagnosis info */

if (ulReturnCode != RC_DONE) /* check the API return code*/
{

/* handle the function error*/
} /* endif API call failed */
/*---*/

After completion of the function call, the function that was stopped by the Text
Search Engine server after an error occurred can be used again.

SetIndexFunctionStatus

Chapter 5. Calling the API functions 143

EhwSetIndexingRules
This function sets up the default rules for assigning format, language and CCSID
parameters to a document when these parameters cannot be detected
automatically during indexing. It also determines the default model and format to be
used for indexes of additional type XTPROP_SECTIONS_ENABLED.

Input parameters
session pointer

Identifies the information-retrieval session. It is the pointer returned by
EhwStartSession when you start a session.

index handle
Identifies the information-retrieval index for which the indexing rules apply. It is
the handle returned by EhwOpenIndex when the index is opened.

data stream length
The length, in bytes, of the data contained in the indexing rules parameter.

indexing rules
Specifies the indexing rules to be applied by Text Search Engine. This
parameter is supplied in a data stream format (see “Data stream syntax” on
page 145).

Output parameters
diagnosis information

If the return code is RC_DATASTREAM_SYNTAX_ERROR the diagnosis
information returned is the offset to the data stream item in error. If the offset is
zero, an item is missing.

return code
The following return code values can be returned with this call:

RC_DONE
RC_UNKNOWN_SESSION_POINTER
RC_INCORRECT_HANDLE
RC_DATASTREAM_SYNTAX_ERROR
RC_MAX_INPUT_SIZE_EXCEEDED
RC_REQUEST_IN_PROGRESS
RC_INCORRECT_AUTHENTICATION (Text Search Engine for AIX only)
RC_UNEXPECTED_ERROR
RC_SERVER_NOT_AVAILABLE
RC_SERVER_BUSY
RC_SERVER_CONNECTION_LOST
RC_NOT_ENOUGH_MEMORY
RC_COMMUNICATION_PROBLEM
RC_IO_PROBLEM
RC_WRITE_TO_DISK_ERROR
RC_DOCMOD_READ_PROBLEM
RC_UNKNOWN_DOCUMENT_MODEL_NAME

See “Appendix A. The API return codes” on page 191 for more information
about these codes.

SetIndexingRules

144 Text Search: Programming the Text Search Engine

Data stream syntax

Indexing rules

<< 05 DFLTRULE S 07 DFMT A document_format 07 CCSID A coded_cs_id <

< 07 LANG A language_id <

<
07 CCSID A coded_cs_id ll DOCMOD A default_document_model

<

< 05 DFLTRULE E <@

The data stream items are:

DFLTRULE
Delimits the default indexing rule.

DFMT
Specifies the default document format that is assumed by Text Search Engine
when the format cannot be determined automatically. File IMOLSDEF.H,
provided with Text Search Engine, defines symbolic names for the document
formats that are supported by Text Search Engine. For indexes with property
XTPROP_SECTIONS, the chosen format must be enabled for section
recognition. For other indexes, the format does not have to be enabled for
section recognition. The 2-byte binary value must be in big-endian format.

CCSID
Specifies the default SAA Coded Character Set Identifier that is applied by Text
Search Engine when it cannot be determined automatically. File IMOLANG.H,
provided with Text Search Engine, defines symbolic names for the CCSIDs that
are supported by Text Search Engine. The 2-byte binary value must be in
big-endian format.

For NGRAM indexes, the CCSID is ignored because it must not be altered once
the index exists.

LANG
Specifies the default language that is assumed by Text Search Engine when it
cannot be determined automatically. File IMOLANG.H, provided with Text
Search Engine, defines symbolic names for the language identifiers that are
supported by Text Search Engine. The 2-byte binary value must be in
big-endian format.

CCSID
Specifies the SAA Coded Character Set Identifier for the following string input
value. The 2-byte binary value must be in big-endian format.

DOCMOD
Specifies the default model to be used for section-enabled indexes. The model
name given here must have been entered in the model definition file before
creating the index. Input is invalid for all other indexes. Valid characters for the
value of the DOCMOD parameter are in the range of [A-Z, a-z, 0-9].

SetIndexingRules

Chapter 5. Calling the API functions 145

Usage
When indexing a document, Text Search Engine needs to know:

v Which type of document it is; if it is an AmiPro document, for example, or a flat
ASCII file.

v Which language is the document written in.

v Which Coded Character Set Identifier (CCSID) is used.

Most document formats are detected by Text Search Engine automatically, but a
document does not always contain information about the language and CCSID. Text
Search Engine allows you to specify default indexing rules that are applied
whenever information about document format, language, or CCSID cannot be
determined automatically.

When this call is issued to set default rules for a section-enabled index, ensure that
the document format chosen as a default is enabled for section recognition. If it is
set to any other value, the API call fails.

Use EhwGetIndexingRules to check which indexing rule is currently active.

Example
This is an example of an EhwSetIndexingRules function call:

/*--*/
/* Call EhwSetIndexingRules to set the default indexing rule */
/*--*/
ulReturnCode =
EhwSetIndexingRules(pSession, /* In -- session pointer */

ulIndexHdl, /* In -- index handle */
ulLength, /* In -- length of data stream*/
pchRule, /* In -- data stream */
&ulDiagInfo);/* Out -- diagnosis info */

if (ulReturnCode != RC_DONE) /* check the API return code */
{

/* handle the function error */
} /* endif API call failed */

SetIndexingRules

146 Text Search: Programming the Text Search Engine

EhwSort
This function sorts a result list according to the given criteria.

Input parameters
session pointer

Identifies the information-retrieval session. It is the pointer returned by
EhwStartSession when you start a session.

result list handle
Identifies the search result list to be sorted. It is the handle returned by an
EhwCreateResultView or EhwSelectResultView call.

data stream length
The length, in bytes, of the data contained in the sort criteria parameter.

sort criteria
Specifies the attributes and sort sequence according to which the result list is to
be sorted. This sort method parameter has a data stream format (see “Data
stream syntax”).

Output parameters
diagnosis information

There is no diagnosis information returned for this call.

return code
The following return code values can be returned with this call:

RC_DONE
RC_EMPTY_LIST
RC_UNKNOWN_SESSION_POINTER
RC_INCORRECT_HANDLE
RC_REQUEST_IN_PROGRESS
RC_UNEXPECTED_ERROR
RC_SERVER_NOT_AVAILABLE
RC_SERVER_BUSY
RC_SERVER_CONNECTION_LOST
RC_NO_RANKING_DATA_AVAILABLE
RC_DATASTREAM_SYNTAX_ERROR
RC_NOT_ENOUGH_MEMORY
RC_COMMUNICATION_PROBLEM

See “Appendix A. The API return codes” on page 191 for more information
about these codes.

Data stream syntax

Sort criteria

<< ? 05 SSP S Criterion 05 SSP E <@

Sort

Chapter 5. Calling the API functions 147

Criterion:

06 SFID A attribute_name 05 SOA A
05 SOD A

The data stream items are:

SSP
Delimits a sort criterion.

SFID
Specifies the name of an attribute:

SFID_RVAL
Sort by 1-byte rank values.

SFID_DNAM
Sort by document name. Note that this is the document name Text Search
Engine uses in its indexes. It can be different from names or titles a library
assigns to this document.

SFID_XNAM
Alphanumerical sort by index name.

SFID_DSIZE
Sort by the number of occurrences of words in document (excluding
stopwords).

Not available for the result of a query containing free-text arguments.

SFID_RCNT
Sort by the number of term matches in the document.

Not available for the result of a query containing free-text arguments.

SOA
Specifies ascending sort order.

SOD
Specifies descending sort order.

Usage
EhwSort supports multiple sort levels where each level has an independent sort
direction. Each sort attribute can appear at most once in the sort data stream.

Example
This is an example of an EhwSort function call:

/*---*/
/* Call API function EhwSort until end of data is indicated */
/*---*/

ulReturnCode =
EhwSort (pSession, /* In -- session pointer */

ulResultHandle, /* In -- result view handle */
&ulDataLength, /* In -- data stream length */
&pDataStream, /* In -- sort method */
&ulDiagnosisInfo);/* Out -- diagnosis info. */

/* check the API return code */
if (ulReturnCode != RC_DONE)
{

/* handle the function error */
} /* endif API call failed */

Sort

148 Text Search: Programming the Text Search Engine

/*--*/
/* parse the result view data stream ... */
/*--*/

/*---*/

The area pointed to by pDataStream could contain the following data stream, and
ulDataLength would then have a value of 42.

Symbolic notation Hexadecimal representation

05 SSP S 0005 0258 E2
06 SFID A SFID_RVAL 0006 0262 C1 01
05 SOD A 0005 0268 C1
05 SSP E 0005 019A C5
05 SSP S 0005 0258 E2
06 SFID A SFID_XNAM 0006 0262 C1 04
05 SOA A 0005 0267 C1
05 SSP S 0005 0258 E2

Sort

Chapter 5. Calling the API functions 149

EhwStartSession
This function connects your application to a specified Text Search Engine server
and starts an information-retrieval session. You must call this function before using
any other Text Search Engine function except EhwListServers.

Input parameters
data stream length

The length, in bytes, of the data contained in the session information parameter.

session information
Identifies the Text Search Engine server. This parameter is supplied in a data
stream format (see “Data stream syntax”).

Output parameters
session pointer

Identifies the information-retrieval session established. The session pointer is
provided as an input parameter in subsequent function calls.

diagnosis information
There is no diagnosis information returned for this call.

return code
The following return code values can be returned with this call:

RC_DONE
RC_UNKNOWN_SERVER_NAME
RC_UNKNOWN_COMMUNICATION_TYPE
RC_UNKNOWN_SERVER_INFORMATION
RC_DATASTREAM_SYNTAX_ERROR
RC_INCORRECT_AUTHENTICATION
RC_UNEXPECTED_ERROR
RC_SERVER_NOT_AVAILABLE
RC_SERVER_BUSY
RC_NOT_ENOUGH_MEMORY
RC_COMMUNICATION_PROBLEM
RC_IO_PROBLEM
RC_WRITE_TO_DISK_ERROR

See “Appendix A. The API return codes” on page 191 for more information
about these codes.

Data stream syntax

Session information

<< ll IRSN A server_name
05 IRS S Server information 05 IRS E

<

<
05 ATC S Authentication info 05 ATC E

<

StartSession

150 Text Search: Programming the Text Search Engine

<

? 05 LIBI S Library access 05 LIBI E

<@

Server information:

06 CTYP A communication_type ll IRSID A server_identifier <

< ll APPID A application_identifier

Authentication info:

ll UID A user-identifier ll PWD A password

Library access:

ll LIBNAM A library_name ll UID A user-id ll PWD A password

The data stream items are:

IRSN
Specifies the symbolic name of the Text Search Engine server with which your
application is to establish a session. It must be one of the server names
returned by EhwListServers.

IRS
Delimits the information that specifies the requested information-retrieval
session.

ATC
Delimits the authentication information. Authentication information is needed
only when you start a service in which one of the following administration
functions are used on an AIX operating system:

EhwCreateIndex
EhwDeleteIndex
EhwReorgIndex
EhwResumeIndex
EhwSuspendIndex
EhwUpdateIndex
EhwSetIndexFunctionStatus
EhwSetIndexInfo
EhwClearIndex
EhwClearScheduledDocuments

LIBI
Delimits the library access information.

CTYP
Specifies the type of the communication between client and Text Search Engine
server.

StartSession

Chapter 5. Calling the API functions 151

The communication type is a one-byte code:

CTYP_PIPES
Windows NT only. Specifies that the client server communication works with
named pipes.

CTYP_TCPIP
Specifies that the client server communication works with TCP/IP.

Additional communication protocols are available. They can be configured using
the command line utilities imocfgcl for a client, and imocfgsv for a server. Use
the datastream item IRSN to use one of these communication protocols.

IRSID
Specifies the identifier of the Text Search Engine server (LAN ID of the
machine) with which your application is to establish a session.

APPID
Specifies the communication-specific application identifier. For communication
type CTYP_PIPES, this is the name of the pipe; for CTYP_TCPIP this indicates
the port number.

UID
When used with ATC, identifies the user for whom the information-retrieval
session is to be started. User-identifier must be a user ID on the target
machine, that is, a member of the Text Search Engine administrator group.

When used with LIBI, specifies the user ID for accessing the library system.

PWD
Specifies the password of the user identified by the UID item.

LIBNAM
Specifies the name of the library to be accessed.

Usage
Your application can start parallel sessions to several Text Search Engine servers.
All API calls of a single session, starting with EhwStartSession and ending with
EhwEndSession, must be issued sequentially. To ensure this, issue the calls of one
session from a single thread of your application program.

Thread reentrancy is ensured only when one session per thread is used.

Example
This is an example of an EhwStartSession function call:

/*---*/
/* Start a session, using API function EhwStartSession */
/*---*/
ulReturnCode =
EhwStartSession (ulDataLength, /* In -- data stream length */

pDataStream, /* In -- session information */
&pSession, /* Out -- session pointer */
&ulDiagnosisInfo); /* Out -- diagnosis info. */

if (ulReturnCode != RC_DONE) /* check the API return code */
{

/* handle the function error */
} /* endif API call failed */
/*---*/

StartSession

152 Text Search: Programming the Text Search Engine

The area pointed to by pDataStream could contain the following data stream, and
ulDataLength would have a value of 13.

Symbolic notation Hexadecimal representation

13 IRSN A SERVER02 000D 000B C1 5345525645523032

StartSession

Chapter 5. Calling the API functions 153

EhwSuspendIndex
This function suspends an information-retrieval index from any administrative task
except for EhwResumeIndex. If the processing condition SUSP_EXCEPT_SEARCH
is set, searching can continue.

Input parameters
session pointer

Identifies the information-retrieval session. It is the pointer returned by
EhwStartSession when you start a session.

data stream length
The length, in bytes, of the data contained in the index name parameter.

index name
Specifies the information-retrieval index to be suspended. This parameter is
supplied in a data stream format (see “Data stream syntax” on page 155).

processing condition
The following suspend conditions can be specified with this call:

SUSP_ALL
Specifies that you want to suspend the information-retrieval index, forcing a
possibly running task that updates, reorganizes, or searches the current
index, to be stopped immediately. Queries are not allowed after
EhwSuspendIndex has run.

SUSP_EXCEPT_SEARCH
Specifies that you want to suspend the information-retrieval index, forcing a
possibly running task that updates or reorganizes the current index, to be
stopped immediately. Queries are still allowed.

Output parameters
diagnosis information

There is no diagnosis information returned for this call.

return code
The following return code values can be returned with this call:

RC_DONE
RC_UNKNOWN_SESSION_POINTER
RC_UNKNOWN_INDEX_NAME
RC_DATASTREAM_SYNTAX_ERROR
RC_UNKNOWN_CONDITION
RC_REQUEST_IN_PROGRESS
RC_INCORRECT_AUTHENTICATION (Text Search Engine for AIX only)
RC_UNEXPECTED_ERROR
RC_SERVER_NOT_AVAILABLE
RC_SERVER_BUSY
RC_SERVER_CONNECTION_LOST
RC_SERVER_IN_ERROR
RC_INDEX_NOT_ACCESSIBLE
RC_NOT_ENOUGH_MEMORY
RC_NO_ACTION_TAKEN
RC_COMMUNICATION_PROBLEM
RC_IO_PROBLEM
RC_WRITE_TO_DISK_ERROR

SuspendIndex

154 Text Search: Programming the Text Search Engine

See “Appendix A. The API return codes” on page 191 for more information
about these codes.

Data stream syntax

Index name

<< ll XNAM A index_name <@

The data stream item is:

XNAM
Specifies the name of the index to be suspended.

Usage
The EhwSuspendIndex function prevents the specified information-retrieval index
from any modification until it is resumed with an EhwResumeIndex function call.

Example
This is an example of an EhwSuspendIndex function call:

/*---*/
/* Call API function to suspend the information-retrieval index */
/*---*/
ulReturnCode =
EhwSuspendIndex (pSession, /* In -- session pointer */

ulDataLength, /* In -- data stream length */
pDataStream, /* In -- index name */
&ulDiagnosisInfo); /* Out -- diagnosis info. */

if (ulReturnCode != RC_DONE) /* check the API return code */
{

/* handle the function error */
} /* endif API call failed */
/*---*/

The area pointed to by pDataStream could contain the following data stream, and
ulDataLength would have a value of 12.

Symbolic notation Hexadecimal representation

12 XNAM A INDEX07 000C 003C C1 494E4445583037

SuspendIndex

Chapter 5. Calling the API functions 155

EhwUpdateIndex
This function starts a server task that updates an information-retrieval index.

Input parameters
session pointer

Identifies the information-retrieval session. It is the pointer returned by
EhwStartSession when you start a session.

index handle
Identifies the information-retrieval index to be updated. It is the handle returned
by EhwOpenIndex when the index is opened.

Output parameters
diagnosis information

There is no diagnosis information returned for this call.

return code
The following return code values can be returned with this call:

RC_DONE
RC_UNKNOWN_SESSION_POINTER
RC_INCORRECT_HANDLE
RC_REQUEST_IN_PROGRESS
RC_INCORRECT_AUTHENTICATION (Text Search Engine for AIX only)
RC_UNEXPECTED_ERROR
RC_SERVER_NOT_AVAILABLE
RC_SERVER_BUSY
RC_SERVER_CONNECTION_LOST
RC_CONFLICTING_TASK_RUNNING
RC_NOT_ENOUGH_MEMORY
RC_NO_ACTION_TAKEN
RC_FUNCTION_DISABLED
RC_FUNCTION_IN_ERROR
RC_COMMUNICATION_PROBLEM
RC_IO_PROBLEM
RC_WRITE_TO_DISK_ERROR
RC_MAX_NUMBER_OF_TASKS
RC_GTR_ERROR

See “Appendix A. The API return codes” on page 191 for more information
about these codes.

Usage
The EhwUpdateIndex function starts the update of the specified Text Search Engine
index. After checking whether the index can be updated and setting up the update
process, control is returned to your application. The actual update process is
performed asynchronously. That is, the return code RC_DONE signals that the
update process has been started successfully. Your application is not notified when
and if the update process has completed. Use EhwGetIndexFunctionStatus to
check for the correct processing of administration tasks. If
EhwGetIndexFunctionStatus returns an error code, refer to “Appendix B. Error
codes returned by GetIndexingMsgs and GetIndexFunctionStatus” on page 207.

The update function processes the requests scheduled with EhwScheduleDocument
calls since the last update of the index. Requests scheduled by other applications

UpdateIndex

156 Text Search: Programming the Text Search Engine

for the same index are also processed. If the indexing queue contains several
requests for the same document, only the latest request is processed.

Error messages and warnings related with EhwUpdate processing can be checked
using the API call EhwGetIndexingMessages. For indexes of additional property
XTPROP_SECTIONS_ENABLED the default settings for document model and
document format must be compatible for EhwUpdate to run properly. See
“EhwSetIndexingRules” on page 144 for details.

This is an example of an EhwUpdateIndex function call:
/*---*/
/* Issue an API function call to start an update index task */
/*---*/
ulReturnCode =
EhwUpdateIndex (pSession, /* In -- session pointer */

ulIndexHandle, /* In -- index handle */
pulDiagnosisInfo); /* Out -- diagnosis info */

if (ulReturnCode != RC_DONE) /* check the API return code */
{

/* distinguish the code types */
/*--*/
/* no error code: */
/* case RC_NO_ACTION_TAKEN: empty scheduling queue */
/* ... */
/* case RC_CONFLICTING_TASK_RUNNING: */
/* active update | reorg. task */
/* ... */
/* case RC_FUNCTION_DISABLED: update function is disabled */
/* ... */
/* continue with processing */
/*--*/
/* function error: */
/* case RC_UNEXPECTED_ERROR: */
/* case RC_SERVER_BUSY: */
/* case RC_SERVER_CONNECTION_LOST: */
/* case RC_COMMUNICATION_PROBLEM: */
/* case RC_NOT_ENOUGH_MEMORY: */
/* case RC_FUNCTION_IN_ERROR: */
/* case RC_IO_PROBLEM: */
/* case RC_WRITE_TO_DISK_ERROR: */
/* handle the function error */
/* ... */
/* stop processing / return */
/*--*/
/* default: application error: */
/* handle the internal error */
/* ... */
/* stop processing / return */
/*--*/

} /* endif API return code > 0 */
/*---*/

UpdateIndex

Chapter 5. Calling the API functions 157

UpdateIndex

158 Text Search: Programming the Text Search Engine

Chapter 6. Connecting Text Search Engine to a library

This chapter explains the purpose of the Text Search Engine library service
interfaces. It describes the types of library service requests issued by Text Search
Engine and how you can implement these requests to connect Text Search Engine
to your library system.

What library services provide
Using the Text Search Engine library service interfaces, you can connect Text
Search Engine with the library system (or document management system) of your
choice. The Text Search Engine library service interfaces are a set of defined
requests that Text Search Engine issues to obtain services (such as access to
documents) from the library system managing the documents indexed by Text
Search Engine. This type of request interface is sometimes called a user exit.

This set of requests is designed to facilitate the mapping of the requests to the
functional interfaces of any library system. The requests are defined as C function
calls. All information exchange is done via parameters of these functions. Variable
data, including entire documents, are passed in the form of data streams. (For
general conventions on passing parameters and for an explanation of Text Search
Engine data streams, see “Data exchange conventions” on page 1.)

To support a specific library system in your installation or for your application, you
must program a full set of functions that map the Text Search Engine library service
requests to the programming interfaces of that library system.

Text Search Engine requires library services on the client and on the server
workstation so that, for example, documents can be accessed for indexing on the
Text Search Engine server.

© Copyright IBM Corp. 1993, 2001 159

Functions
Here is a summary of the functions that library services need to provide:

v Session control functions are invoked by Text Search Engine to initiate or end a
session with the library system. These functions are intended for allocating
storage space and establishing an environment for subsequent function calls,
and for releasing storage space and disconnecting from the library system.

v Document access functions are invoked by Text Search Engine to retrieve a
document from the library system. These functions must also provide information
about the document, such as the document format. The document content is
retrieved in blocks of a size determined by Text Search Engine.

v Document list functions are invoked by Text Search Engine to obtain a list of the
documents stored within a given document group, or a list of document groups
within a given document group or in the entire library.

v Attribute list functions are invoked by Text Search Engine to retrieve attributes
associated with a given document or document group.

v Document index status function is invoked by Text Search Engine to update the
index status of documents in the library. This function is optional; it is only used
when it exists.

Library service functions should respond to each call with a return code. In
compliance with C programming conventions, the return code is the C function
value. The possible return codes are defined by Text Search Engine for each
function. Additional diagnosis information can also be returned, for example, to log
the cause of a failure.

Detailed information about the parameters and use of each function is provided in
“Chapter 7. Specifications for library services” on page 163.

Setting up the library connection
After you have programmed the library services required by Text Search Engine,
link this set of C functions into a library services shared library.

These library services must be available on the Text Search Engine server and on
each Text Search Engine client that can be connected to this server.

The library service requirements are slightly different for client and server:
v Some functions are not required on the server.
v Some functions request different levels of information on the client or server.

Details are specified for each individual function in “Chapter 7. Specifications for
library services” on page 163.

It is recommended that you provide two different sets of library service functions,
tailored to the requirements of the Text Search Engine client and server. This is
especially useful when the differing requirements have performance implications.
For example, the LIB_list_documents function can return a document name for
each document. On the client, this name is displayed for the document and should
be provided; on the server, this name is never used and should be omitted if
obtaining it affects performance.

In the following, it is assumed that you provide two library services, one with client
functions, the other with server functions. These DLLs must have 8-character
names (with characters chosen from uppercase letters A-Z and digits 0-9).

160 Text Search: Programming the Text Search Engine

These names must be specified as properties of the particular Text Search Engine
index. Use the API function EhwCreateIndex or EhwSetIndexInfo to specify the
library services names.

The functions are:

v Client:
– LIB_init
– LIB_access_doc
– LIB_read_doc_content
– LIB_close_doc
– LIB_list_doc_groups
– LIB_list_documents
– LIB_get_doc_group_attr_values
– LIB_get_doc_attr_values
– LIB_end

v Server:
– LIB_init
– LIB_access_doc
– LIB_read_doc_content
– LIB_close_doc
– LIB_list_doc_groups
– LIB_list_documents
– LIB_doc_index_status
– LIB_end

For technical reasons on the AIX and z/OS platforms, shared libraries for the library
services must contain a special function exclsldr (which can be a NOP function),
and which must be defined as the main entry point for the shared library. Example:
#ifdef _AIX
#ifdef __cplusplus
extern "C" {void exclsldr(void);}
#endif // __cplusplus

void exclsldr(void)
{

; /* do nothing - required as main entry point */
}
#endif // _AIX

Only one set of library services can be associated with each Text Search Engine
index. If you want to connect one Text Search Engine index with several library
systems, you have to make the distinction (and the correct routing of requests)
within the library service functions you provide.

Normally, you use one Text Search Engine index per library, so you can use one
Text Search Engine server to support several library systems.

Text Search Engine provides the following library services for flat file access:
IMOLSCFS

Client library service
IMOLSSFS

Server library service

Finally, put the library services into the subdirectory specified by the corresponding
environment variable (such as LIBPATH for z/OS, or PATH for Windows): both
library services on the Text Search Engine server, the client library service on each
Text Search Engine client.

Chapter 6. Connecting Text Search Engine to a library 161

On AIX systems, library services should be found in
/usr/TextTools/lib

On Sun Solaris systems, library services should be found in
/opt/TextTools/lib

Library services for z/OS offer access to documents on Hierarchical File System
(HFS) and MVS datasets (PS, PO).

162 Text Search: Programming the Text Search Engine

Chapter 7. Specifications for library services

This chapter describes each function of the Text Search Engine library service
interfaces. It explains the input parameters that are provided and the output
parameters that are returned. For each function, it gives a brief description of its
usage within Text Search Engine.

All storage used to pass information from the library services to the calling Text
Search Engine is allocated before the call. If not otherwise stated, the length of this
storage is given using the same parameter used after the call to report how much
of the storage has been used.

Where parameters are used for input and output, they are only listed as output
parameters. For example, when Text Search Engine calls the function
LIB_list_documents, it first gets the storage in which the function is to return a
document list. The pointer to the storage space is passed as an input parameter but
this parameter is not described. Instead, the document list that it points to is
described as an output parameter.

For the exact number and sequence of parameters and their data types, refer to the
file IMOLSPRO.H, which contains C prototype statements for each function. This
file is part of the library services toolkit.

The set of return codes specifically for the library services are described in “Error
handling concept and return codes” on page 185.

The library service functions are described in alphabetic order. Figure 23 shows the
logical grouping of library service function calls.

LIB_init
|
| LIB_access_doc
| |
| | LIB_read_doc_content
| |
| LIB_close_doc
|
| LIB_list_doc_groups
| LIB_list_documents
|
| LIB_get_doc_attr_values
| LIB_get_doc_group_attr_values
|
| LIB_doc_index_status
|
LIB_end

Figure 23. Library service functions and their logical relationships

© Copyright IBM Corp. 1993, 2001 163

LIB_access_doc
This function accesses and opens a document of the library system and returns the
document information used by Text Search Engine. The document information
output parameter is optional. If this parameter is not used, return a length of 0L for
the length of document information value.

If any of the output values inside the datastream is omitted, return the correct length
of the ouput datastream containing the other values.

If values for document information are returned, they override the default settings
for the index the function was called for.

If format recognition of Text Search Engine is active, it may later override this
default. To ensure that the document format setting returned by your own library
service is used, switch off the format recognition of Text Search Engine (see the
Text Search Engine: Customization and Administration manual).

Input parameters
anchor

Identifies the library session. It is the pointer returned by LIB_init.

length of document id
The length, in bytes, of the document id parameter.

document id
The identifier of the document to be accessed.

Output parameters
length of document information

The length, in bytes, of the document information parameter.

document information
Provides the document encoding information. This parameter is returned in data
stream format (see “Data stream syntax” on page 165).

document handle
Identifies the accessed document and its status. It is used as input parameter
for LIB_read_doc_content and LIB_close_doc.

diagnosis information
See “Error handling concept and return codes” on page 185 for information on
the purpose of this parameter.

return code
Use one of the following return code values with this call:

RC_OK
RC_TERMINATION_ERROR
RC_DOCUMENT_CURR_NOT_ACCESSIBLE
RC_DOCUMENT_NOT_FOUND
RC_DOCUMENT_NOT_TO_INDEX
RC_DOCUMENT_IN_ERROR

See “Error handling concept and return codes” on page 185 for more
information about these codes.

164 Text Search: Programming the Text Search Engine

Data stream syntax

Document information

<<
07 ID_DOCF A document_format

<

<
07 CCSID A coded_character_set_identifier

<

<
07 LANG A language_identifier

<@

The data stream items are as follows:

ID_DOCF
Specifies the format of the document. document format is a two-byte binary
code that must be specified in big-endian format. Symbolic names for all valid
format codes are defined in file IMOLSDEF.H of the library services toolkit.

CCSID
Specifies the SAA Coded Character Set Identifier for text in the accessed
document. This CCSID is assumed until control tags within the document itself
specify a different CCSID or code page. File IMOLANG.H in the library services
toolkit defines symbolic names for all CCSIDs supported by Text Search
Engine. The two-byte binary value must be specified in big-endian format.

LANG
Specifies the language of the document. File IMOLANG.H in the library services
toolkit defines symbolic names for all language identifiers that are supported by
Text Search Engine. The 2-byte binary value must be specified in big-endian
format.

If you specify a language for which no language dictionary is installed:

v The Text Search Engine indexing service cannot apply proper linguistic
processing to this document. This is recorded as an indexing message that
can be processed using EhwGetIndexingMsgs.

For documents in the Text Search Engine text format, the language is specified
(and may change) within the document. For this document format, the language
specified here is ignored.

Usage
This function is called to retrieve format and encoding information for a specific
document. In addition, use the function to initialize subsequent reading (with
LIB_read_doc_content calls) by setting the current position pointer to the beginning
of the document content.

Text Search Engine accesses only one document at a time (within a single library
session). It always calls LIB_close_doc before accessing another document.

Chapter 7. Specifications for library services 165

LIB_close_doc
This function ends access to a document.

Input parameters
anchor

Identifies the library session. It is the pointer returned by LIB_init.

document handle
Identifies the document and its status. It is the handle returned by
LIB_access_doc when the document was accessed. After completion of the call,
this handle is considered obsolete.

Output parameters
diagnosis information

See “Error handling concept and return codes” on page 185 for information on
the purpose of this parameter.

return code
Use one of the following return code values with this call:

RC_OK
RC_TERMINATION_ERROR
RC_DOCUMENT_IN_ERROR

See “Error handling concept and return codes” on page 185 for more
information about these codes.

166 Text Search: Programming the Text Search Engine

LIB_doc_index_status
This function allows the library to update the index status of documents. It is an
optional function used on the Text Search Engine server: if there is no entry point
defined in the library service on the server, it is not invoked.

Input parameters
anchor

Identifies the library session. It is the pointer returned by LIB_init.

length of document status list
The length, in bytes, of the document status list parameter.

document status list
Lists the documents whose index status has changed. This parameter is
passed in data stream format as shown below.

check required
Allows the library service to do special checks when called during indexing of
documents (LS_TRUE). When called while clearing the indexing queue or the
index, this parameter is LS_FALSE. The symbolic names for this parameter are
defined in file IMOLSDEF.H of the library services toolkit.

Output parameters
diagnosis information

See “Error handling concept and return codes” on page 185 for information on
the purpose of this parameter.

return code
Use one of the following return code values with this call:

RC_OK
RC_TERMINATION_ERROR
RC_DATASTREAM_SYNTAX_ERROR

See “Error handling concept and return codes” on page 185 for more
information about these codes.

Data stream syntax

Document status list

<< ? Document status information <@

Document status information:

ll DID A document_identifier 13 DTIM A date-time <

< 07 DSID A document_index_status
09 ID_ERR A error_code

Chapter 7. Specifications for library services 167

The data stream items are as follows:

DID
Specifies the identifier of a document whose index status has changed.

DTIM
Specifies the date and time when the document status changed. date-time is
specified in the LS_DATIME format defined in file IMOLSDEF.H of the library
services toolkit.

DSID
Specifies the changed index status.

Symbolic names for the document index status identifiers are defined in file
IMOLSDEF.H of the library services toolkit.

ID_ERR
Specifies the reason why a document could not be indexed, or why a problem
occurred when a document was indexed. error code is a 4-byte unsigned long.
See “Appendix B. Error codes returned by GetIndexingMsgs and
GetIndexFunctionStatus” on page 207.

Usage
This function is called to allow the library to update the index status of documents.
It informs the library of the result of a requested indexing of documents, or clearing
the index.

When called during the indexing of documents, the parameter check required is set
to LS_TRUE, allowing the library to do checking, such as for consistency. When
called during clear requests, it is set to LS_FALSE.

Any error when called while clearing the index causes the cleanup not to be done.
When this function is called during indexing of documents, Text Search Engine
performs the requested function against its index, regardless of the return code
from this service. However, it tries to recover the problem by taking all documents in
the call that caused the error and all documents in the next intended calls that have
not been performed due to the error, and again calls the service within the next
indexing of documents.

168 Text Search: Programming the Text Search Engine

LIB_end
This function ends the library session established with the LIB_init call.

Input parameters
anchor

Identifies the library session. It is the pointer returned by LIB_init.

Output parameters
diagnosis information

See “Error handling concept and return codes” on page 185 for information on
the purpose of this parameter.

return code
Use one of the following return code values with this call:

RC_OK
RC_TERMINATION_ERROR

See “Error handling concept and return codes” on page 185 for more
information about these codes.

Usage
Use this function to release all storage areas allocated during the library session,
and to end communication with the library system. After this call, the session anchor
and any associated handles are considered obsolete by Text Search Engine.

Chapter 7. Specifications for library services 169

LIB_get_doc_attr_values
This function returns attribute values for a given set of documents.

This function is not used for IBM Content Manager.

Input parameters
anchor

Identifies the library session. It is the pointer returned by LIB_init.

length of attribute request specification
The length, in bytes, of the attribute request specification parameter.

attribute request specification
Lists the attributes for which values are to be returned, and the documents for
which these values are required. This parameter is passed in data stream
format (see “Data stream syntax” on page 171).

length of buffer to receive attribute values list
The length, in bytes, of the buffer provided by Text Search Engine in which the
function returns the requested information (see the attribute values list
parameter). If the buffer is too small to receive all of the requested information,
the information must be returned in blocks as described in “Usage” on
page 172.

request type
Specifies the type of the request. It contains one of the values LS_FIRST,
LS_NEXT, or LS_CANCEL. See “Usage” on page 172 for an explanation of
request types. The symbolic names for request types are defined in file
IMOLSDEF.H of the library services toolkit.

Output parameters
length of attribute values list

The length, in bytes, of the information returned in the attribute values list
parameter.

attribute values list
Lists the requested attribute values for the requested documents. This
parameter is returned in data stream format (see “Data stream syntax” on
page 171).

attribute values handle
This is an output parameter for request types LS_FIRST and LS_NEXT when
the return code is RC_CONTINUATION_MODE_ENTERED. The returned
handle is used as an input parameter for request types LS_NEXT and
LS_CANCEL to obtain the next block of information. See “Usage” on page 172
for a more detailed explanation.

diagnosis information
See “Error handling concept and return codes” on page 185 for information on
the purpose of this parameter.

return code
Use one of the following return code values with this call:

RC_OK
RC_TERMINATION_ERROR
RC_DATASTREAM_SYNTAX_ERROR
RC_NO_ATTRIBUTES_DEFINED

170 Text Search: Programming the Text Search Engine

See “Error handling concept and return codes” on page 185 for more
information about these codes.

Data stream syntax

Attribute request specification

<< ? ll ATID A attribute_identifier ? ll DID A document_identifier <@

The data stream items are as follows:

ATID
Specifies the identifier of an attribute whose value is requested. The following
attribute identifiers are used by Text Search Engine:

NM
for the document name attribute

DT
for the date-time attribute

DS
for the description attribute

LO
for the location attribute.

Symbolic names for the attribute identifiers are defined in file IMOLSDEF.H of
the library services toolkit.

DID
Specifies the identifier of a document for which attribute values are requested.

Attribute values list

<< ? ?ll DID A document_id Attribute
ll DNFND A document_identifier
ll DNACC A document_identifier
ll DACCD A document_identifier
ll DAERR A document_identifier

<@

Attribute:

ll ATID A attribute_id ll AVAL A attribute_value

The data stream items are as follows:

DID
Specifies the identifier of a document for which attribute values are returned.

Chapter 7. Specifications for library services 171

ATID
Specifies the identifier of an attribute for which values were requested. The
attributes must be returned in the same sequence as in the attribute request
specification.

AVAL
Specifies the attribute value. If the attribute does not have a value (or is not
maintained by your library system), no AVAL item is returned and the ATID item
can also be omitted.

attribute value is returned as follows:
v For the DT attribute, in format LS_DATIME as defined in file IMOLSDEF.H of

the library services toolkit. The length of the value is always 8 bytes.
v For all other attributes, as a zero-terminated character string in the system

code page. These values are of variable length, with a maximum of 260
bytes.

DNFND
Specifies the identifier of a document that could not be found.

DNACC
Specifies the identifier of a document that is currently not accessible.

DACCD
Specifies the identifier of a document for which access is denied.

DAERR
Specifies the identifier of a document for which access failed.

The last four data stream items identify documents for which no attribute values can
be returned. The documents should be listed in the same sequence as in the
attribute request specification.

Usage
If none of the requested attributes is defined in your library system, use return code
RC_NO_ATTRIBUTES_DEFINED (instead of returning a long list that contains no
values).

The request type parameter is used as follows:

v The first request is always of type LS_FIRST.

v If the provided buffer is too small to contain all of the requested information, the
first block of information is returned together with return code
RC_CONTINUATION_MODE_ENTERED and a handle in the attribute values
handle parameter.

v The next block of information is requested by calling the same function with
request type LS_NEXT and providing the handle as input.

v This is repeated until the function returns the last block of information and return
code RC_OK.

v If Text Search Engine encounters an error situation, or the remaining information
is no longer required, the function is called with request type LS_CANCEL for
cleanup processing.

172 Text Search: Programming the Text Search Engine

LIB_get_doc_group_attr_values
This function returns attribute values for a given set of document groups.

Input parameters
anchor

Identifies the library session. It is the pointer returned by LIB_init.

length of attribute request specification
The length, in bytes, of the attribute request specification parameter.

attribute request specification
Lists the attributes for which values are to be returned, and the document
groups for which these values are required. This parameter is passed in data
stream format (see “Data stream syntax” on page 174).

length of buffer to receive attribute values list
The length, in bytes, of the buffer provided by Text Search Engine in which the
function returns the requested information (see the attribute values list
parameter). If the buffer is too small to receive all of the requested information,
the information must be returned in blocks as described in “Usage” on
page 175.

request type
Specifies the type of the request. It contains one of the values LS_FIRST,
LS_NEXT, or LS_CANCEL. See “Usage” on page 175 for an explanation of
request types. The symbolic names for request types are defined in file
IMOLSDEF.H of the library services toolkit.

Output parameters
length of attribute values list

The length, in bytes, of the information returned in the attribute values list
parameter.

attribute values list
Lists the requested attribute values for the requested document groups. This
parameter is returned in data stream format (see “Data stream syntax” on
page 174).

attribute values handle
This is an output parameter for request types LS_FIRST and LS_NEXT when
the return code is RC_CONTINUATION_MODE_ENTERED. The returned
handle is used as an input parameter for request types LS_NEXT and
LS_CANCEL to obtain the next block of information. See “Usage” on page 175
for a more detailed explanation.

diagnosis information
See “Error handling concept and return codes” on page 185 for information on
the purpose of this parameter.

return code
Use one of the following return code values with this call:

RC_OK
RC_TERMINATION_ERROR
RC_DATASTREAM_SYNTAX_ERROR
RC_NO_ATTRIBUTES_DEFINED

See “Error handling concept and return codes” on page 185 for more
information about these codes.

Chapter 7. Specifications for library services 173

Data stream syntax

Attribute request specification

<< ll ATID A attribute_identifier <

< ? ll DGID A document_group_identifier <@

The data stream items are as follows:

ATID
Specifies the identifier of an attribute whose value is requested. The following
attribute identifier is used by Text Search Engine:

NM
for the group name attribute

Symbolic names for the attribute identifiers are defined in file IMOLSDEF.H of
the library services toolkit.

DGID
Specifies the identifier of a document group for which attribute values are
requested.

Attribute values list

<< ? ll DGID A group_id Attribute
ll DGNFND A document_group_identifier
ll DGNACC A document_group_identifier
ll DGACCD A document_group_identifier
ll DGAERR A document_group_identifier

<@

Attribute:

ll ATID A attribute_id ll AVAL A attribute_value

The data stream items are as follows:

DGID
Specifies the identifier of a document group for which attribute values are
returned.

ATID
Specifies the identifier of an attribute for which values were requested.

AVAL
Specifies the attribute value. If the attribute does not have a value (or is not
maintained by your library system), no AVAL item is returned and the ATID item
can also be omitted.

174 Text Search: Programming the Text Search Engine

The attribute value for the NM attribute, the only attribute requested by Text
Search Engine, is returned as a zero-terminated character string in the system
code page. The value is of variable length, with a maximum of 260 bytes.

DGNFND
Specifies the identifier of a document group that could not be found.

DGNACC
Specifies the identifier of a document group that is currently not accessible.

DGACCD
Specifies the identifier of a document group for which access is denied.

DGAERR
Specifies the identifier of a document group for which access failed.

The last four data stream items identify document groups for which no attribute
values can be returned. The document groups should be listed in the same
sequence as in the attribute request specification.

Usage
If none of the requested attributes is defined in your library system, use return code
RC_NO_ATTRIBUTES_DEFINED (instead of returning a long list that contains no
values).

The request type parameter is used as follows:

v The first request is always of type LS_FIRST.

v If the provided buffer is too small to contain all of the requested information, the
first block of information is returned together with return code
RC_CONTINUATION_MODE_ENTERED and a handle in the attribute values
handle parameter.

v The next block of information is requested by calling the same function with
request type LS_NEXT and providing the handle as input.

v This is repeated until the function returns the last block of information and return
code RC_OK.

v If Text Search Engine encounters an error situation, or the remaining information
is no longer required, the function is called with request type LS_CANCEL for
cleanup processing.

Chapter 7. Specifications for library services 175

LIB_init
This function starts a library session. It is called by Text Search Engine before any
other library service function.

Input parameters
data stream length

The length, in bytes, of the data contained in the session information parameter.

session information
Identifies the index name and (optionally the library) for which this session
should be established. This parameter is supplied in a data stream format (see
“Data stream syntax”).

Output parameters
anchor

Identifies the library session established. This pointer is provided as an input
parameter to all subsequent function calls, so data needed by them can be
passed using this pointer. You can allocate storage for your own data, then
“anchor” it in this parameter and use its data for subsequent calls. Remember
to release this storage in the LIB_end call.

diagnosis information
See “Error handling concept and return codes” on page 185 for information on
the purpose of this parameter.

return code
Use one of the following return code values with this call:

RC_OK
RC_TERMINATION_ERROR
RC_DATASTREAM_SYNTAX_ERROR

See “Error handling concept and return codes” on page 185 for more
information about these codes.

Data stream syntax

Session information

<< ll XNAM A index_name
ll LIBID A library_information

<

<

? 05 LIBI S Library access 05 LIBI E

<@

Library access:

ll LIBNAM A library_name ll UID A user_id ll PWD A password

The data stream items are as follows:

176 Text Search: Programming the Text Search Engine

XNAM
Specifies the current Text Search Engine index. You use it to do index-specific
processing in your library services.

LIBID
Specifies the library information per index. It is the item specified with the
EhwCreateIndex API call.

LIBI
Delimits the library access information.

LIBNAM
Specifies the name of the library to be accessed.

UID
Specifies the user ID for accessing the library system.

PWD
Specifies the password of the user identified by the UID item.

Usage
The anchor is a pointer to the environment established for communication with the
library system. With only the anchor as an input parameter, the LIB_end function
needs to be able to identify and free all storage allocated for the current session,
and to end communication with the library system.

Chapter 7. Specifications for library services 177

LIB_list_doc_groups
This function lists all document groups within a given document group or within the
entire library.

Input parameters
anchor

Identifies the library session. It is the pointer returned by LIB_init.

length of document group id
The length, in bytes, of the document group id parameter.

document group id
The identifier of the document group for which a list of embedded document
groups is requested. To request a list of document groups for the entire library,
this parameter contains a special identifier defined with the symbolic name
LIBRARY in file IMOLSDEF.H of the library services toolkit.

length of buffer to receive document group list
The length, in bytes, of the buffer provided by Text Search Engine in which the
function returns the requested information (see the document group list
parameter). If the buffer is too small to receive all of the requested information,
the information must be returned in blocks as described in “Usage” on
page 179.

request type
Specifies the type of the request. It contains one of the values LS_FIRST,
LS_NEXT, or LS_CANCEL. See “Usage” on page 179 for an explanation of
request types. The symbolic names for request types are defined in file
IMOLSDEF.H of the library services toolkit.

Output parameters
length of document group list

The length, in bytes, of the information returned in the document group list
parameter.

document group list
Lists the identifiers (and, optionally, the names) of document groups embedded
in the document group or library specified in the document group id parameter.
This parameter is returned in data stream format (see “Data stream syntax” on
page 179).

doc group list handle
An output parameter for request types LS_FIRST and LS_NEXT when the
return code is RC_CONTINUATION_MODE_ENTERED. The returned handle is
used as an input parameter for request types LS_NEXT and LS_CANCEL to
obtain the next block of information. See “Usage” on page 179 for a more
detailed explanation.

diagnosis information
See “Error handling concept and return codes” on page 185 for information on
the purpose of this parameter.

return code
Use one of the following return code values with this call:

RC_OK
RC_CONTINUATION_MODE_ENTERED
RC_TERMINATION_ERROR

178 Text Search: Programming the Text Search Engine

RC_EMPTY_LIST
RC_DOCUMENT_GROUP_NOT_FOUND

See “Error handling concept and return codes” on page 185 for more
information about these codes.

Data stream syntax

Document group list

<< ? ll DGID A group_id
ll DGNAM A group_name

<@

The data stream items are as follows:

DGID
Specifies a document group identifier

DGNAM
Specifies the document group name. A document group name should be
returned when the function is called from the Text Search Engine client.

Usage
This function supports the concept of document groups within library systems.
Document groups can be implemented under various names (folders, workgroups,
subdirectories) in different library systems. Text Search Engine is not concerned
with the library-specific implementation of the group concept.

If your library system has a hierarchical group concept (allowing for groups within
groups), implement the LIB_list_doc_groups function to handle only one nesting
level at a time. That is, it lists only the document groups on the next level below the
given group; if called for the entire library, the function lists only the highest-level
groups in the library. Text Search Engine calls the function repeatedly to list the
lower-level groups. Use the return code RC_EMPTY_LIST to indicate that there are
no further groups embedded in the given group.

If your library does not support a group concept, implement the LIB_list_doc_groups
function to return the RC_EMPTY_LIST return code when called for the entire
library.

The request type parameter is used as follows:

v The first request is always of type LS_FIRST.

v If the provided buffer is too small to contain all of the requested information, the
first block of information is returned together with return code
RC_CONTINUATION_MODE_ENTERED and a handle in the doc group list
handle parameter.

v The next block of information is requested by calling the same function with
request type LS_NEXT and providing the handle as input.

v This is repeated until the function returns the last block of information and return
code RC_OK.

v If Text Search Engine encounters an error situation, or the remaining information
is no longer required, the function is called with request type LS_CANCEL.

Chapter 7. Specifications for library services 179

Text Search Engine usually calls LIB_list_doc_groups for one document group,
then, without retrieving all blocks of information, calls the function for a second
document group, then requests the next block of information for the first document
group, and so on. When programming this library service function, make sure that
you support this calling sequence; use the doc group list handle to maintain the
status of each pending function request.

Together with LIB_list_documents, this function is used to list all documents that
belong to a specified document group.

180 Text Search: Programming the Text Search Engine

LIB_list_documents
This function lists all documents within a given document group. The list can be
restricted by a condition specified in the request, and the function can return some
additional information for each document in the list.

Input parameters
anchor

Identifies the library session. It is the pointer returned by LIB_init.

length of document group specification
The length, in bytes, of the document group specification parameter.

document group specification
Contains the identifier of the document group for which documents are to be
listed and, optionally, conditions for the document list. This parameter is passed
in data stream format (see “Data stream syntax” on page 182).

length of buffer to receive document list
The length, in bytes, of the buffer provided by Text Search Engine in which the
function returns the requested information (see the document list parameter). If
the buffer is too small to receive all of the requested information, the information
must be returned in blocks as described in “Usage” on page 182.

request type
Specifies the type of the request. It contains one of the values LS_FIRST,
LS_NEXT, or LS_CANCEL. See “Usage” on page 182 for an explanation of
request types. The symbolic names for request types are defined in file
IMOLSDEF.H of the library services toolkit.

Output parameters
length of document list

The length, in bytes, of the information returned in the document list parameter.

document list
Lists the identifiers (and, optionally, some attributes) of the documents in the
given document group. This parameter is returned in data stream format (see
“Data stream syntax” on page 182).

document list handle
This is an output parameter for request types LS_FIRST and LS_NEXT when
the return code is RC_CONTINUATION_MODE_ENTERED. The returned
handle is used as an input parameter for request types LS_NEXT and
LS_CANCEL to obtain the next block of information. See “Usage” on page 182
for a more detailed explanation.

diagnosis information
See “Error handling concept and return codes” on page 185 for information on
the purpose of this parameter.

return code
Use one of the following return code values with this call:

RC_OK
RC_CONTINUATION_MODE_ENTERED
RC_TERMINATION_ERROR
RC_EMPTY_LIST
RC_DATASTREAM_SYNTAX_ERROR
RC_DOCUMENT_GROUP_NOT_FOUND

Chapter 7. Specifications for library services 181

See “Error handling concept and return codes” on page 185 for more
information about these codes.

Data stream syntax

Document group specification

<< ll DGID A doc_group_id
13 DTRQ A date-time

<@

The data stream items are as follows:

DGID
Specifies the identifier of the document group for which documents are to be
listed.

DTRQ
Specifies a date-time condition for documents to be listed. It restricts the list to
documents added, changed, or deleted since the specified date and time. See
“Usage” for further information.

date-time is specified in the LS_DATIME format defined in file IMOLSDEF.H of
the library services toolkit.

Document list

<< ? ll DID A document_id Document attributes <@

Document attributes:

ll DNAM A document_name 13 DTLM A date-time_last_modified

The data stream items are as follows:

DID
Specifies a document identifier.

DNAM
Specifies the document name. A document name should be returned when the
function is called from the Text Search Engine client.

DTLM
Specifies the date and time when the document was last modified or when the
document was created. date-time is specified in the LS_DATIME format defined
in file IMOLSDEF.H of the library services toolkit.

Usage
If your library system has a hierarchical group concept (allowing for groups within
groups), implement the LIB_list_documents function to list only the documents
directly contained in the given group, not documents in subgroups of the given

182 Text Search: Programming the Text Search Engine

group. Text Search Engine uses the LIB_list_doc_groups function repeatedly to list
the lower-level groups, then the LIB_list_documents function to list the documents
in these subgroups.

The request type parameter is used as follows:

v The first request is always of type LS_FIRST.

v If the provided buffer is too small to contain all of the requested information, the
first block of information is returned together with return code
RC_CONTINUATION_MODE_ENTERED and a handle in the document list
handle parameter.

v The next block of information is requested by calling the same function with
request type LS_NEXT and providing the handle as input.

v This is repeated until the function returns the last block of information and return
code RC_OK.

v If Text Search Engine encounters an error situation, or the remaining information
is no longer required, the function is called with request type LS_CANCEL.

Text Search Engine usually calls LIB_list_documents for one document group, then,
without retrieving all blocks of information, calls the function for a second document
group, then requests the next block of information for the first document group, and
so forth. When programming this library service function, make sure that you
support this calling sequence; use the document list handle to maintain the status of
each pending function request.

On the Text Search Engine server, this function is used to list all documents that
belong to a specified document group, and have been added or modified since the
date and time specified (with the DTRQ item).

If your library system cannot handle a date-time condition (for example, because it
does not maintain modification dates for documents), the function can return all
documents that belong to the specified group.

On the Text Search Engine client, the function is used to display the documents in a
given document group. The user can then select documents for indexing.

Chapter 7. Specifications for library services 183

LIB_read_doc_content
This function reads a specified amount of the document content.

Input parameters
anchor

Identifies the library session. It is the pointer returned by LIB_init.

document handle
Identifies the document and its status. It is the handle returned by
LIB_access_doc when the document was accessed.

bytes to be skipped
Number of bytes to be skipped before actually reading the document content,
starting from the current position. Increase the current position pointer by the
number of skipped bytes.

bytes to be read
Number of bytes to be read starting from the current position. After reading,
increase the current position pointer by the number of bytes requested.

Output parameters
length of document text

The length, in bytes, of the document text actually returned. For return code
RC_OK, this must be equal to the number of bytes requested (parameter bytes
to be read). For return code RC_END_OF_FILE, this number may be lower
than or equal to the number of bytes requested.

document text
Contains the requested part of the document content.

diagnosis information
See “Error handling concept and return codes” on page 185 for information on
the purpose of this parameter.

return code
Use one of the following return code values with this call:

RC_OK
RC_TERMINATION_ERROR
RC_DOCUMENT_CURR_NOT_ACCESSIBLE
RC_END_OF_FILE
RC_DOCUMENT_IN_ERROR

See “Error handling concept and return codes” on page 185 for more
information about these codes.

Usage
This function is called to read parts, or all of, the document content. On the Text
Search Engine server, the function is required to read documents for indexing.

When browsing compound documents (that is, documents that contain images,
graphics, or other pieces of information that are not displayed by the Text Search
Engine browser), Text Search Engine uses the parameter bytes to be skipped to
improve performance by skipping nontext information in the document content.

184 Text Search: Programming the Text Search Engine

Error handling concept and return codes
Text Search Engine defines return codes for use with your library service functions.
With these return codes, you can accurately record problems with document access
or document handling, restrictions of your library system, and even errors in the
function input provided by Text Search Engine. Some return codes, such as RC_OK
or RC_END_OF_FILE, signal processing conditions to Text Search Engine. Only
one return code, RC_TERMINATION_ERROR, is used to record an unrecoverable
error situation.

With each call, you can return up to 16 bytes of additional information in the
diagnosis information parameter. If supplied together with return code RC_OK,
RC_CONTINUATION_MODE_ENTERED, RC_EMPTY_LIST, or
RC_END_OF_FILE, Text Search Engine ignores the diagnosis information. If
supplied together with any other return code value, Text Search Engine logs the
diagnosis information.

It is recommended that you use this feature only as a complementary service and
implement your own error logging facilities within the library services.

The following return codes are defined for library service functions:

RC_CONTINUATION_MODE_ENTERED
Indicates that the buffer is too small to return all of the requested information.
Further calls are required to obtain the remaining information.

RC_DATASTREAM_SYNTAX_ERROR
Indicates an error in the input data stream provided by Text Search Engine.
This return code causes Text Search Engine to end the processing.

RC_DOCUMENT_GROUP_NOT_FOUND
Indicates that the specified document group is not found. Text Search Engine
skips processing of the group.

RC_DOCUMENT_IN_ERROR
Indicates that an error occurred or is detected while processing the requested
document. This causes Text Search Engine to end the processing of the
document. If the document is accessed for indexing, this is recorded as a
document error and the indexing task continues to process the remaining
documents scheduled for indexing.

RC_DOCUMENT_CURR_NOT_ACCESSIBLE
Indicates that the requested document is currently not accessible. The
document may, for example, be accessed exclusively by another task or user.
This causes Text Search Engine to:
v Show an error message if it was to display the document
v Defer the indexing of the document if it was to read the document for

indexing.

RC_DOCUMENT_NOT_FOUND
Indicates that the requested document is not found. This situation can occur
when a document was deleted but not yet removed from the index, or when a
document was deleted after being scheduled for indexing. It causes Text Search
Engine to:
v Show an error message if it was to display the document
v Skip the indexing of the document if it was to read the document for

indexing.

Chapter 7. Specifications for library services 185

RC_DOCUMENT_NOT_TO_INDEX
Indicates that the requested document is not to be indexed. This situation can
occur when the document is scheduled for indexing, but is actually not suited
for indexing (for example, because it does not contain text). This return code
causes Text Search Engine to skip the indexing of the document.

RC_EMPTY_LIST
Indicates that the requested list of documents, document groups, or attributes is
empty. It serves as an informational processing condition.

RC_END_OF_FILE
Indicates that the end of the document content was reached.

RC_NO_ATTRIBUTES_DEFINED
Indicates that none of the specified attributes are defined in your library system.

RC_OK
Indicates that the function completed successfully.

RC_TERMINATION_ERROR
Indicates that an unrecoverable error situation was detected that requires
ending the calling Text Search Engine task. This return code should be used
with care and only when there is no other possibility than to terminate the
processing of Text Search Engine.

186 Text Search: Programming the Text Search Engine

Chapter 8. Using the Text Search Engine text format

The Text Search Engine text format is a document format that consists of plain text
and a few controls required for linguistic processing of the text. Its purpose is to
provide a simple data interface for text-processing systems (such as editors), library
systems, or customer applications that intend to have documents indexed by Text
Search Engine.

Documents in this format can be processed by the Text Search Engine
document-indexing functions. The Text Search Engine text format is a data stream
format. See “Basics about the data streams” on page 2.

Data stream syntax
The following diagram defines a document in Text Search Engine text format:

Document

<< 05 DOC S
ll DNAM A document_name

? Section 05 DOC E <@

Section:

05 DEL S
ll SNAM A section_name

<

< ? ?Text encoding Paragraph 05 DEL E

Paragraph:

05 PAR S ? ?ll TEXT A text_unit
05 NL A

05 PAR E

Text encoding:

07 CCSID A coded_character_set_identifier <

< 07 LANG A language_identifier

The data stream items are as follows:

© Copyright IBM Corp. 1993, 2001 187

DOC
Indicates the start and end of a document.

DNAM
Specifies a document name. This specification is optional and is not used by
Text Search Engine.

DEL
Indicates the start and end of a document element. The only type of document
element currently supported is a text section.

SNAM
Specifies the name of a text section. Section names should conform to the rules
for Text Search Engine names given in “Passing character data” on page 3.
Currently, Text Search Engine supports only one text section with a default
name. The specification of a section name is ignored and can be omitted.

PAR
Indicates the start and end of a text paragraph within the current section.
Paragraphs can be used in Text Search Engine search requests as a proximity
measure.

TEXT
Specifies one text portion within the current paragraph. Usually, text unit
contains one line of text, and the TEXT item is followed by an NL item; but text
lines can also be split into several parts, each part specified in its own TEXT
item.

The text should use the coded character set and language associated with the
current paragraph.

NL
Indicates the start of a new line in the current paragraph. Lines are not used as
a proximity measure in Text Search Engine search requests; Text Search
Engine uses sentences as the more natural proximity measure. NL items can,
therefore, be omitted entirely.

During indexing, NL items trigger the Text Search Engine dehyphenation
process: the removal of syllable hyphens from line ends and reunification of the
fragments of hyphenated words.

CCSID
Specifies the SAA Coded Character Set Identifier for text in subsequent
paragraphs, which remains valid until a paragraph is preceded by a new CCSID
item. You can use one of the following CCSIDs:

CCSID_00500
for text in the Latin-1 EBCDIC code page 500.

CCSID_0850
for text in the Latin-1 ASCII code page 850.

CCSID_00819
for text in the ASCII code page 819 as defined by ISO standard 8859-1.

These symbolic names for CCSIDs are defined in the file IMOLANG.H of the
library services toolkit provided with Text Search Engine. The 2-byte binary
value must be specified in big-endian format.

LANG
Specifies the language identifier for text in subsequent paragraphs, valid until a
paragraph is preceded by a new LANG item. File IMOLANG.H in the library

188 Text Search: Programming the Text Search Engine

services toolkit defines symbolic names for all language identifiers supported by
Text Search Engine. The 2-byte binary value must be specified in big-endian
format.

Symbolic names for the item identifiers of the above data stream items are defined
in the file IMOLSDEF.H provided with the Text Search Engine toolkits.

Chapter 8. Using the Text Search Engine text format 189

190 Text Search: Programming the Text Search Engine

Appendix A. The API return codes

This appendix lists the codes that are returned by the Text Search Engine API in
response to a function call. They are listed in alphabetic order. The meaning of
each code is explained and the recommended action for it is given. It also gives
general information on error handling.

All Text Search Engine API calls return a numeric return code as the C function
value. Throughout this book, symbolic names are used, such as
RC_INCORRECT_HANDLE. The actual return codes are defined in file IMOAPIC.H
of the API toolkit, provided with Text Search Engine. In this file, the return codes are
listed by type alphabetically and by value in a separate table. The descriptions of
each RC also is in alphabetic order. See “Setting up your application” on page 34
for recommendations on using the toolkit definitions in your application program.

API error handling
The Text Search Engine API intercepts error situations and reports error conditions
with a return code. Additional diagnosis information can also be returned.

Applications that call Text Search Engine API functions should always check the
return code before trying to process any other output parameters. The return codes
possible with each call are listed with the parameters of each call in “Chapter 5.
Calling the API functions” on page 37. A detailed explanation of each return code is
given in this chapter.

The diagnosis information is provided to help you find the cause of an error. It is a
4-byte binary value. It should not be processed by your application, but only used
for problem determination. To help you do so, you can print, display, or dump the
diagnosis information.

In some cases, incorrect input such as an obsolete session pointer can cause an
abnormal end condition in the API services that cannot be intercepted by Text
Search Engine.

Types of return codes
The API return codes can be grouped as follows:

v No error

These codes are returned when a function call has completed successfully. If
there is no other action to perform and no supplementary information available,
an RC_DONE code is returned. When only part of the requested information is
returned because the buffers cannot store all of it, an
RC_CONTINUATION_MODE_ENTERED code is returned.

Other codes in this category include information that your application may want
to pass on to users or to an administrator.

Your application program should check for each return code of this type and take
appropriate action.

v User error

Return codes of this type indicate that there is an error in an input parameter of
the function call. These are usually due to a programming error in your

© Copyright IBM Corp. 1993, 2001 191

application. Thus, your application should only record return codes of this type
and take no further action. You should, of course, modify the program that
caused the error.

v Internal program error

This code indicates an error in one of the Text Search Engine programs. If you
cannot continue using the product, you should contact your IBM representative.

v Resource constraints

These codes are returned when there is a problem with storage space or other
resources. In some cases, your application can free local resources (such as
search results that are no longer needed).

v Other errors

These can occur for several reasons, for example, when the Text Search Engine
server is not available. Your application should only record return codes of this
type. Then, an administrator should find and correct the cause of the problem.

Table 4 lists all API return codes by type. You should refer to this table when
programming return code handling in your application. Following this table is an
alphabetic listing of the API return codes, together with explanations and
recommended program actions.

The return codes defined for the Text Search Engine library service interfaces are
listed and explained in “Error handling concept and return codes” on page 185.

Table 4. API return codes, listed by type

Type Return codes

No error
RC_CONFLICTING_TASK_RUNNING
RC_CONTINUATION_MODE_ENTERED
RC_DICTIONARY_NOT_FOUND

RC_DONE

RC_EMPTY_INDEX
RC_EMPTY_LIST
RC_EMPTY_QUERY
RC_END_OF_INFORMATION
RC_FUNCTION_DISABLED
RC_INDEX_DELETED
RC_INDEX_SUSPENDED
RC_MORE_INFORMATION
RC_NO_ACTION_TAKEN
RC_PROCESSING_LIMIT_EXCEEDED
RC_SERVER_BUSY
RC_STOPWORD_IGNORED

192 Text Search: Programming the Text Search Engine

Table 4. API return codes, listed by type (continued)

Type Return codes

User error RC_CAPACITY_LIMIT_EXCEEDED
RC_CCS_NOT_SUPPORTED
RC_CONFLICT_WITH_INDEX_TYPE
RC_DATASTREAM_SYNTAX_ERROR
RC_DOCMOD_READ_PROBLEM
RC_DOCUMENT_MODEL_ALREADY_EXISTS
RC_DOCUMENT_CURR_NOT_ACCESSIBLE
RC_DOCUMENT_GROUP_NOT_FOUND
RC_DOCUMENT_IN_ERROR
RC_DOCUMENT_NOT_FOUND
RC_DOCUMENT_NOT_IN_VIEW
RC_DOCUMENT_NOT_SUPPORTED
RC_DOCUMENT_NOT_TO_INDEX
RC_FUNCTION_NOT_SUPPORTED
RC_INCORRECT_AUTHENTICATION
RC_INCORRECT_HANDLE
RC_INCORRECT_INDEX_NAME
RC_INCORRECT_LIBRARY_ID
RC_INCORRECT_LOCATION
RC_INCORRECT_LS_EXECUTABLES
RC_INCORRECT_RELEVANCE_VALUE
RC_INVALID_ATTRIBUTE_VALUE
RC_INVALID_IDENTIFIER
RC_INVALID_SECTION_TYPE

User error (continued) RC_INDEX_ALREADY_EXISTS
RC_INDEX_ALREADY_OPENED
RC_INDEX_NOT_MEMBER_OF_GROUP
RC_INDEX_NOT_OPEN
RC_INVALID_MASKING_SYMBOL
RC_LANGUAGE_NOT_SUPPORTED
RC_LOCATION_IN_USE
RC_MAX_INPUT_SIZE_EXCEEDED
RC_MEMBER_OF_INDEX_GROUP
RC_MISSING_DEFAULT_MODEL
RC_NO_RANKING_DATA_AVAILABLE
RC_QUERY_SCOPE_TOO_COMPLEX
RC_REQUEST_IN_PROGRESS
RC_RESULT_ALREADY_RANKED
RC_RESULT_VIEW_EXISTS
RC_SECTION_NAME_ALREADY_EXISTS
RC_SECTION_TAG_ALREADY_EXISTS
RC_SERVER_VERSION_NOT_CURRENT
RC_THESAURUS_PROBLEM
RC_UNKNOWN_COMMUNICATION_TYPE
RC_UNKNOWN_CONDITION
RC_UNKNOWN_DOCUMENT_MODEL_NAME
RC_UNKNOWN_INDEX_NAME
RC_UNKNOWN_INDEX_TYPE
RC_UNKNOWN_SECTION_NAME
RC_UNKNOWN_SERVER_INFORMATION
RC_UNKNOWN_SERVER_NAME
RC_UNKNOWN_SESSION_POINTER

Internal program error RC_UNEXPECTED_ERROR

Appendix A. The API return codes 193

Table 4. API return codes, listed by type (continued)

Type Return codes

Resource constraints RC_BROWSER_TIME_OUT
RC_CAPACITY_LIMIT_EXCEEDED
RC_MAX_NUMBER_OF_BUSY_INDEXES
RC_MAX_NUMBER_OF_INDEXES
RC_MAX_NUMBER_OF_OPEN_INDEXES
RC_MAX_NUMBER_OF_RESULTS
RC_MAX_NUMBER_OF_TASKS
RC_MAX_OUTPUT_SIZE_EXCEEDED
RC_NOT_ENOUGH_MEMORY
RC_QUERY_TOO_COMPLEX

Other errors RC_COMMUNICATION_PROBLEM
RC_FUNCTION_IN_ERROR
RC_INDEX_GROUP_SEARCH_ERROR
RC_INDEX_NOT_ACCESSIBLE
RC_INDEX_SPECIFIC_ERROR
RC_INSTALLATION_PROBLEM
RC_IO_PROBLEM
RC_LINGUISTIC_SERVICE_FAILED
RC_LS_FUNCTION_FAILED
RC_LS_NOT_EXECUTABLE
RC_NO_RAT_EXPANSION
RC_SERVER_CONNECTION_LOST
RC_SERVER_IN_ERROR
RC_SERVER_NOT_AVAILABLE
RC_STOPWORDLIST_NOT_ACCESSIBLE
RC_WRITE_TO_DISK_ERROR

Table 5. API return codes, listed by number

Return codes Values

RC_DONE
RC_CONTINUATION_MODE_ENTERED
RC_END_OF_INFORMATION
RC_EMPTY_LIST
RC_MORE_INFORMATION
RC_INDEX_GROUP_SEARCH_ERROR
RC_INDEX_SPECIFIC_ERROR
RC_DICTIONARY_NOT_FOUND
RC_PROCESSING_LIMIT_EXCEEDED
RC_UNKNOWN_SERVER_NAME
RC_INCORRECT_AUTHENTICATION
RC_DATASTREAM_SYNTAX_ERROR

0
1
2
3
4
7
8
9

12
16
17
18

RC_QUERY_SCOPE_TOO_COMPLEX
RC_QUERY_TOO_COMPLEX
RC_MEMBER_OF_INDEX_GROUP
RC_UNKNOWN_INDEX_NAME
RC_INCORRECT_HANDLE
RC_INDEX_NOT_MEMBER_OF_GROUP
RC_UNKNOWN_SESSION_POINTER
RC_UNKNOWN_COMMUNICATION_TYPE
RC_UNKNOWN_SERVER_INFORMATION
RC_INVALID_MASKING_SYMBOL
RC_UNEXPECTED_ERROR
RC_SERVER_NOT_AVAILABLE
RC_INDEX_ALREADY_OPENED
RC_MAX_NUMBER_OF_OPEN_INDEXES
RC_MAX_NUMBER_OF_RESULTS

20
22
23
24
25
26
27
29
30
31
32
33
35
36
37

194 Text Search: Programming the Text Search Engine

Table 5. API return codes, listed by number (continued)

Return codes Values

RC_CCS_NOT_SUPPORTED
RC_LANGUAGE_NOT_SUPPORTED
RC_CONFLICT_WITH_INDEX_TYPE
RC_MAX_INPUT_SIZE_EXCEEDED
RC_SERVER_BUSY
RC_SERVER_CONNECTION_LOST
RC_SERVER_IN_ERROR
RC_REQUEST_IN_PROGRESS
RC_UNKNOWN_INDEX_TYPE
RC_INCORRECT_INDEX_NAME
RC_INCORRECT_LS_EXECUTABLES
RC_INCORRECT_LIBRARY_ID
RC_INDEX_ALREADY_EXISTS
RC_MAX_NUMBER_OF_INDEXES
RC_INCORRECT_LOCATION
RC_LOCATION_IN_USE
RC_UNKNOWN_CONDITION

41
42
43
46
47
48
49
50
51
52
53
54
55
56
57
58
59

RC_INDEX_DELETED
RC_INDEX_SUSPENDED
RC_INDEX_NOT_ACCESSIBLE
RC_MAX_NUMBER_OF_BUSY_INDEXES
RC_CONFLICTING_TASK_RUNNING
RC_NOT_ENOUGH_MEMORY
RC_MAX_OUTPUT_SIZE_EXCEEDED
RC_COMMUNICATION_PROBLEM
RC_NO_ACTION_TAKEN
RC_EMPTY_INDEX
RC_EMPTY_QUERY
RC_INSTALLATION_PROBLEM
RC_FUNCTION_DISABLED
RC_FUNCTION_IN_ERROR
RC_IO_PROBLEM
RC_WRITE_TO_DISK_ERROR
RC_SERVER_VERSION_NOT_CURRENT

60
61
62
63
64
65
68
70
71
72
73
74
75
76
77
78
79

RC_FUNCTION_NOT_SUPPORTED
RC_RESULT_ALREADY_RANKED
RC_RESULT_VIEW_EXISTS
RC_INDEX_NOT_OPEN
RC_NO_RANKING_DATA_AVAILABLE
RC_LINGUISTIC_SERVICE_FAILED
RC_THESAURUS_PROBLEM
RC_INVALID_IDENTIFIER
RC_DOCUMENT_MODEL_ALREADY_EXISTS
RC_UNKNOWN_DOCUMENT_SECTION_NAME
RC_DOCMOD_READ_PROBLEM
RC_UNKNOWN_DOCUMENT_MODEL_NAME
RC_SECTION_NAME_ALREADY_EXISTS
RC_SECTION_TAG_ALREADY_EXISTS
RC_MAX_NUMBER_OF_TASKS
RC_LS_NOT_EXECUTABLE
RC_LS_FUNCTION_FAILED
RC_CAPACITY_LIMIT_EXCEEDED

80
81
82
83
84
85
86
88
89
90
91
92
94
95
96
97
98
99

Appendix A. The API return codes 195

Table 5. API return codes, listed by number (continued)

Return codes Values

RC_DOCUMENT_NOT_ACCESSIBLE
RC_DOCUMENT_CURR_NOT_ACCESSIBLE
RC_DOCUMENT_NOT_TO_INDEX
RC_DOCUMENT_NOT_FOUND
RC_DOCUMENT_IN_ERROR
RC_DOCUMENT_NOT_SUPPORTED
RC_CROSSIDX_SEARCH_NOT_ALLOWED
RC_DOCUMENT_GROUP_NOT FOUND
RC_INVALID_ATTRIBUTE_VALUE
RC_INVALID_SECTION_TYPE
RC_INCORRECT_RELEVANCE_VALUE
RC_NO_RAT_EXPANSION
RC_DOCUMENT_NOT_IN_VIEW

100
101
102
103
104
105
110
111
112
113
120
130
131

RC_STOPWORDLIST_NOT_ACCESSIBLE

200
201
202
203

196 Text Search: Programming the Text Search Engine

RC_CCS_NOT_SUPPORTED

Explanation:

For EhwSearch: A CCSID for the index (CCSID)
specified in the query parameter is not supported by
Text Search Engine.

For EhwCreateIndex: No CCSID for the index (XCCSID)
is specified for an Ngram index, or the specified CCSID
is not supported on the server platform.

Programmer response: Adapt your application so that
it does not specify unsupported CCSIDs. All CCSIDs
supported by Text Search Engine are defined in file
IMOLANG.H provided with Text Search Engine.

With an Ngram index, use only CCSIDs supported by
the platform you are using.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_COMMUNICATION_PROBLEM

Explanation: Communication with the Text Search
Engine server failed.

Problem determination: The error could be caused
by a lack of storage space or by an incorrect installation
of Text Search Engine.

Programmer response: Issue an EhwEndSession call
and end the application, saving any information that can
help to find the cause of the error. For problem
determination purposes, you can continue to issue any
Text Search Engine API calls.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_CONFLICTING_TASK_RUNNING

Explanation: The request cannot be processed by
Text Search Engine at this time. There is a server task
running that updates or reorganizes the
information-retrieval index. No EhwUpdateIndex or
EhwReorgIndex calls are accepted while this task is
active.

Programmer response: You can issue the same call
(EhwUpdateIndex or EhwReorgIndex) again later.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_CONFLICT_WITH_INDEX_TYPE

Explanation:

For EhwSearch: A search term of the query parameter
contains one of the following:
v One of the precision qualities BOUND, CSENS, or

ESTEM, when the index is not Ngram, or, in the case
of CSENS, when the index is not created with the
XTADD_CASE_ENABLE option.

For EhwCreateIndex: An additional feature that is not
supported for the chosen index type is specified, or a
CCSID for the index (XCCS) is specified although the
index type is not Ngram.

For EhwCreateIndexGroup: An index added to the
group differs from others in its base type.

For EhwSetIndexingRules: A default format not
supporting section recognition has been chosen for an
index with property XTPROP_SECTIONS_ENABLED.

Programmer response: Adapt your application to
prevent the specification of query options that conflict
with the index type.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_CONTINUATION_MODE_ENTERED

Explanation: The requested information is too large
for the buffers. The information is therefore returned in
separate blocks. This code indicates that a block of data
is returned and that there is more information available.

Programmer response: If you want to keep the
information provided, you must save it before you ask
for the next block of data. To get the next block of
information, issue the same call again.

Any other API function call cancels the continuation
mode. If you do not want to continue, you can explicitly
cancel the continuation mode with an
EhwCancelContinuation call.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_DATASTREAM_SYNTAX_ERROR

Explanation: An input parameter provided in data
stream format contains at least one syntactic error.

Programmer response: Issue an EhwEndSession call
and end the application, saving any information that can
help to find the cause of the error.

Diagnosis information: For EhwSearch calls, the
diagnosis information parameter contains an offset
value that can help you determine the cause of the
error. The value points to a data stream item of the
query parameter that caused Text Search Engine to
stop further parsing. For example, the item may be out
of sequence or may have an unknown identifier or type,
or it may contain an invalid value.

RC_DICTIONARY_NOT_FOUND

Explanation: Text Search Engine linguistic services
cannot find the proper dictionary files. The query is
processed without linguistic support.

Problem determination: This could be caused by an

Appendix A. The API return codes 197

installation problem. The dictionary files corresponding
to the specified language code(s) are not available on
the resourcs path specified during client or server
installation or configuration.

Programmer response: You can continue to issue
any API calls.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_DOCMOD_READ_PROBLEM

Explanation: For EhwCreateIndex: The global
document model definition file which should reside in
the server instance directory could not be read.

For EhwSearch and EhwSetIndexingRules: The
document model definition file which should reside in
the data directory of the index, could not be read.

Read failures could be due to:

v A missing or inaccessible file

v Invalid content (a model is declared but not specified
in the file)

v An entry specifying a model is invalid; duplicate
"author =" entries, for example.

v When nesting sections, a level in the hierarchy is
skipped; example:

book = book
author = book/title/author

v Nesting encountered for section of type other than
text

Programmer response: Make sure the requested
model definition file is accessible to the search engine.

RC_DOCUMENT_CURR_NOT_ACCESSIBLE

Explanation: The document is found but cannot be
opened.

Problem determination: This could occur if the
document is accessed exclusively by another task or
another user.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_DOCUMENT_GROUP_NOT_FOUND

Explanation: The library service call
LIB_list_documents cannot access the requested
document group.

Problem determination: This could occur if the
document group (such as a files ystem) is not available
to the application.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_DOCUMENT_IN_ERROR

Explanation: See “Error handling concept and return
codes” on page 185.

RC_DOCUMENT_MODEL_ALREADY_EXISTS

Explanation: This can occur when creating a model
which has already been defined in the target document
model file.

Problem determination: Use a different name for the
new model to be defined.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_DOCUMENT_NOT_FOUND

Explanation: See “Error handling concept and return
codes” on page 185.

RC_DOCUMENT_NOT_SUPPORTED

Explanation: The document is found and can be
opened, but is not of a supported type.

Programmer response: For a list of the document
formats that can be indexed, refer to the IMOLSDEF.H
header file in the library services toolkit.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_DONE

Explanation: The function completed successfully. If
there is an output buffer, it contains all information
requested or, if the previous call returned
RC_CONTINUATION_MODE_ENTERED, the last block
of the requested information.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_EMPTY_INDEX

Explanation: The information-retrieval index specified
in the search request is empty. Either no documents
have ever been added to this index or all documents
have been removed from it. The returned result handle
is not valid.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_EMPTY_LIST

Explanation: There is no information to be returned
for the current request:
v If it was an EhwListServers call, there is no Text

Search Engine server that can be connected to the
client workstation.

198 Text Search: Programming the Text Search Engine

v If it was an EhwListIndexes call, no
information-retrieval index is defined on the
information-retrieval server.

v If it was any call targeted at a search request, no
documents were found by the search.

v If it was any other call returning a list, the list
contains no entries.

Problem determination: This may be due to one of
the following:
v No Text Search Engine servers have been defined for

use with the client workstation.
v The Text Search Engine server has not been installed

correctly.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_EMPTY_QUERY

Explanation: The specified query parameter was
analyzed and processed linguistically by Text Search
Engine. All search terms in the query contained only
stop words (words not indexed by Text Search Engine)
that were removed from the query. The result was an
empty search request.

Programmer response: Inform the users of your
application that stop words should be avoided in Text
Search Engine queries, except when specified within a
phrase.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_FUNCTION_DISABLED

Explanation: Use of the requested function has been
prevented by the administrator. The API call cannot be
processed.

Programmer response: You can continue to issue
any API calls. Use of the function can be permitted
again by the administrator.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_FUNCTION_IN_ERROR

Explanation: The requested function has been locked
due to an error situation on the Text Search Engine
server. The API call cannot be processed.

Programmer response: Issue an EhwEndSession call
and end the application, saving any information that can
help to find the cause of the error. For problem
determination purposes, you can continue to issue any
calls to the Text Search Engine API services. The
administrator can unlock the function using the Text
Search Engine Administration dialog.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_GTR_ERROR

Explanation: The engine working on Ngram indexes
failed with an unexpected error.

Programmer response: Issue an EhwEndSession call
and end the application, saving any information that can
help to find the cause of the error. For problem
determination purposes, you can continue to issue any
calls to the Text Search Engine API services.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_INCORRECT_AUTHENTICATION

Explanation: 1. You started a session that used an
administration function in which the user ID or the
password was incorrect, or

2. You started an administration function in a session in
which the user ID or password has not been provided
for a user in the smadmin group on the machine where
Text Search Engine is installed.

Programmer response: 1. If you used an incorrect
user ID or password, issue an EhwStartSession call
again, supplying the correct user ID and password.

2. If you used an administration function in a session
that was started without supplying a user ID or
password, close this session and open a new one
supplying the user ID and password of a user belonging
to the smadmin user group on the machine on which
Text Search Engine is installed.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_INCORRECT_HANDLE

Explanation: A handle specified in an input parameter
is not valid. It must be a handle that was returned by a
previous call that is not obsolete.

Programmer response: Issue an EhwEndSession call
and end the application, saving any information that can
help to find the cause of the error.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_INCORRECT_INDEX_NAME

Explanation: The index name specified in the session
information parameter of EhwCreateIndex did not
comply with the following:
v The maximum length is restricted to eight.
v The characters have to be uppercase letters A-Z or

digits 0-9 of the coded characters set 00819 (ISO
8859-1).

The current request cannot be processed.

Programmer response: Issue an EhwEndSession call

Appendix A. The API return codes 199

and end the application, saving any information that can
help to find the cause of the error.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_INCORRECT_LIBRARY_ID

Explanation: The library identifier specified in the
session information parameter of EhwCreateIndex
exceeded the maximum length of 250.

Programmer response: Issue an EhwEndSession call
and end the application, saving any information that can
help to find the cause of the error.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_INCORRECT_LOCATION

Explanation: The index or work location specified in
the session information parameter of EhwCreateIndex
could not be accessed or created due to one of the
following:
v The specified drive does not exist.
v The directory name is equal to the name of an

existing file.
v The path name does not comply to the naming

conventions of the server system (UNC or 8.3).

The current request cannot be processed.

Programmer response: Issue an EhwEndSession call
and end the application, saving any information that can
help to find the cause of the error.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_INCORRECT_LS_EXECUTABLES

Explanation: An executables name specified in the
session information parameter of EhwCreateIndex did
not comply with the following:
v The maximum length is restricted to eight.
v The characters have to be uppercase letters A-Z or

digits 0-9 of the coded characters set 00819 (ISO
8859-1).

The current request cannot be processed.

Programmer response: Issue an EhwEndSession call
and end the application, saving any information that can
help to find the cause of the error.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_INDEX_ALREADY_EXISTS

Explanation: Text Search Engine received a call to
create an information-retrieval index that was already
existing. The EhwCreateIndex call cannot be processed.

Programmer response: If you intend to replace an
existing index, first delete it using the EhwDeleteResult
call before attempting to create one of the same name.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_INDEX_ALREADY_OPENED

Explanation: A call to open an information-retrieval
index was received while the requested index was
already opened from the current session. An
information-retrieval index can only be opened once per
API session.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_INDEX_DELETED

Explanation: Text Search Engine received a request
relating to an information-retrieval index that was
deleted from another session. The current API call
cannot be processed.

Programmer response: If the index is currently
opened, close it using the EhwCloseIndex call. You can
continue to issue any calls to Text Search Engine API
services.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_INDEX_GROUP_SEARCH_ERROR

Explanation: An
RC_INDEX_GROUP_SEARCH_ERROR is returned
when, during a cross-index search, all indexes had
problems. There will be a search result handle, but no
document IDs in the result. The result handle can be
used only to obtain the return code for each index of the
group being searched on. Issue an EhwGetProblemInfo
call, which returns one return code for each index in
error.

Programmer response: Check the index-specific
return codes.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_INDEX_NOT_ACCESSIBLE

Explanation: Text Search Engine received a request
relating to an information-retrieval index that could not
be accessed. The current API call cannot be processed.

Programmer response: Issue an EhwEndSession call
and end the application, saving any information that can
help to find the cause of the error.

Diagnosis information: There is no diagnosis
information returned with this return code.

200 Text Search: Programming the Text Search Engine

RC_INDEX_NOT_MEMBER_OF_GROUP

Explanation: An error occurred when trying to add a
scope to a query for a cross-index search. An index
name supplied in the input data stream does not belong
to the index group represented by the input
Index_Group_Handle.

Programmer response: Correct the error after having
checked the data stream starting at the offset delivered
in the diagnosis information. Issue a new
EhwAddQueryScope call.

Diagnosis information: The diagnosis information
returned with this return code supplies the offset within
the input data stream, where the error was detected.

RC_INDEX_NOT_OPEN

Explanation: An index has to be open to select a
result list by its name as a selection criterion.

RC_INDEX_SPECIFIC_ERROR

Explanation: This return code means that during a
cross-index search an index-specific error occurred.
There will be a search result, but no document IDs of
the index in error. To obtain further information about
index-specific errors you can issue an
EhwGetProblemInfo call, which returns one return code
for each index in error.

Programmer response: Check the index-specific
return codes.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_INDEX_SUSPENDED

Explanation: Text Search Engine received a request
relating to an information-retrieval index that was
suspended from another or the current session. The
current API call cannot be processed.

Programmer response: If the index is currently open,
close it using the EhwCloseIndex call. You can continue
to issue any calls to Text Search Engine API services,
but it is not recommended to resume the index, using
the EhwResumeIndex call, before checking the reason
for the suspension.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_INSTALLATION_PROBLEM

Explanation: Text Search Engine has encountered an
installation problem.

Problem determination: This code is returned when
one of the following applies:
v The environmental variable that points to the location

of the client configuration file is incorrect.

v The client instance file is missing.
v Entries in the client instance file are incorrect.

Programmer response: Issue an EhwEndSession
call. Do not start a new session with the same server
until the problem is corrected.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_INVALID_ATTRIBUTE_VALUE

Explanation: An invalid attribute value has been
specified for EhwSearch.

Programmer response: Use a value which is valid
with respect to supported formats for non-text section
types. For a list of supported types and formats, see
Text Search Engine: Customization and Administration,
SH12-6365.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_INVALID_IDENTIFIER

Explanation: In EhwCreateDocumentModel, a section
or model name contains invalid code points.

Programmer response: Make sure the rules for the
spelling of section and model names are respected.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_INVALID_SECTION_TYPE

Explanation: For EhwSearch, the section list used to
qualify an attribute criterion contains sections of mixed
types. For EhwCreateDocumentModel, an invalid value
was found for section type.

Programmer response: For EhwSearch, make sure
that all sections used in a section list are of the same
type. For EhwCreateDocumentModel, make sure that
the datastream item is one of the supported identifiers
as defined in imoapic.h.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_INVALID_MASKING_SYMBOL

Explanation: A mask definition in the query parameter
specifies identical RCM and CSM masking symbols.

Programmer response: Adapt your application to
prevent ambiguous definitions of masking symbols for
search terms.

Diagnosis information: There is no diagnosis
information returned with this return code.

Appendix A. The API return codes 201

RC_IO_PROBLEM

Explanation: An error occurred when the Text Search
Engine server attempted to open or read one of its
index files or a dictionary. This can be due to one of the
following:
v An unintentional action by the administrator, such as

the deletion of an index file.
v Incorrect installation of Text Search Engine.

Programmer response: Issue an EhwEndSession call
and end the application, saving any information that can
help to find the cause of the error.

Problem determination: Check with the administrator
that:
v All files of the current information-retrieval index exist
v The Text Search Engine environment variables are

set correctly.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_LANGUAGE_NOT_SUPPORTED

Explanation: The language identifier specified in the
query parameter is not supported by Text Search
Engine.

Programmer response: Adapt your application to
prevent the specification of unsupported or unknown
language identifiers. The language identifiers supported
by Text Search Engine are defined in file IMOLANG.H
provided with Text Search Engine.

Diagnosis information: There is no diagnosis
information returned for this return code.

RC_LOCATION_IN_USE

Explanation: The index or work location specified in
the session information parameter of EhwCreateIndex
were already in use by Text Search Engine. The current
request cannot be processed.

Programmer response: Inform the user and issue the
same call again with other location specification.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_LS_FUNCTION_FAILED

Explanation: A function from within the library services
was called, but it failed to run correctly, giving a return
code or invalid output parameters.

Programmer response: Check the implementation of
functions in the library services for compliance to the
API description. If this return code comes from Text
Search Engine-provided library services, check the
document that caused the problem for consistency. If
there is no obvious reason for failure, save any
information that can help to find the cause of the error,

and report it to your IBM representative.

RC_LS_NOT_EXECUTABLE

Explanation: A library service was called, but the Text
Search Engine was not able to execute it. This may be
due to an installation problem.

Programmer response: Check the name of the library
service as defined for the index showing the error (see
“EhwCreateIndex” on page 52). Ensure that this
program exists in the path used for executable libraries
and that is has been built properly.

RC_MAX_INPUT_SIZE_EXCEEDED

Explanation: The value of the input parameter for
datastream length exceeds the limit allowed for the API
call.

Programmer response: Use the correct value for the
input parameter. If necessary, adjust the size of input
buffer.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_MAX_NUMBER_OF_BUSY_INDEXES

Explanation: The requested function has been
prevented by the search service, because the maximum
number of indexes is currently active.

Programmer response: Reissue the function call after
a short period of time. In general the problem is only
temporary. For configuration information, see Text
Search Engine: Customization and Administration,
SH12-6365.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_MAX_NUMBER_OF_INDEXES

Explanation: There are too many Text Search Engine
indexes to be stored. The EhwCreateIndex call cannot
be processed.

Programmer response: Delete indexes that are no
longer required. Alternatively, you can configure the
system to support more indexes. To do this, add to the
[DAEMONS] section in the server configuration file an
entry like MaxIndexEntries = newNumber, where
newNumber is the new value for the maximum number of
allowed indexes. (For details, see Text Search Engine:
Customization and Administration, SH12-6365.) Stop
and restart the server so that the new setting is
enabled.

Diagnosis information: There is no diagnosis
information returned for this return code.

202 Text Search: Programming the Text Search Engine

RC_MAX_NUMBER_OF_OPEN_INDEXES

Explanation: There are too many index handles to be
stored. The EhwOpenIndex call cannot be processed.

Programmer response: Close an open index, using
the EhwCloseIndex call, before attempting to open
another.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_MAX_NUMBER_OF_RESULTS

Explanation: There are too many result handles to be
stored. The EhwSearch call cannot be processed.

Programmer response: Delete search results that are
no longer required for browsing.

Problem determination: With the Text Search Engine
API services, approximately 800 search results can be
handled per session. The exact number depends on the
complexity of the queries and the size of the results.
You should not normally allow the maximum number of
results to accumulate because it affects processing
performance.

Diagnosis information: There is no diagnosis
information returned for this return code.

RC_MAX_NUMBER_OF_TASKS

Explanation: The requested administration function
has been rejected to run by the search service, since
the maximum number of administration tasks currently
is active. Administration tasks may have been started
via EhwUpdateIndex or EhwReorgIndex.

The maximum number of tasks for administration
functions is a subset of the maximum number of
indexes allowed to be active at a time.

Programmer response: Resubmit the same function
later, but keep in mind that administration tasks can run
for a relatively long time. The problem usually is only
temporary.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_MEMBER_OF_INDEX_GROUP

Explanation: When an EhwCloseIndex call is issued,
the index you want to close must not be a member of
an existing index group.

Programmer response: Delete the index group(s) the
index belongs to and reissue the EhwCloseIndex call.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_MISSING_DEFAULT_MODEL

Explanation: For EhwUpdate: Update was requested
for an index that has the property
XTPROP_SECTIONS_ENABLED, but no default
document model has been defined for that index.

Programmer response: Use API call
EhwSetIndexingRules to define which default should be
used for the document model.

RC_NO_ACTION_TAKEN

Explanation: There is no operation to be performed
for the current request:
v If it was an EhwReorgIndex call, the current

information-retrieval index had just been reorganized
when the request was received.

v If it was an EhwUpdateIndex call, the Text Search
Engine indexing queue did not contain any entries
when the request was received.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_NO_RANKING_DATA_AVAILABLE

Explanation: A function call assumes that basic
ranking data or rank values are given, and does not find
any.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_NO_RAT_EXPANSION

Explanation: No relevance values are assigned to the
documents in the result view, or all relevance values are
zero. Use EhwAssignRelevance for one or more
documents in the result view. Make sure that at least
one document is assigned a nonzero relevance.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_NOT_ENOUGH_MEMORY

Explanation: There is a lack of storage space on the
client or on the server system. The current request
cannot be processed.

Programmer response: Attempt to issue an
EhwEndSession call to release storage space and end
the application, saving any information that can help to
find the cause of the error.

Diagnosis information: There is no diagnosis
information returned with this return code.

Appendix A. The API return codes 203

RC_PROCESSING_LIMIT_EXCEEDED

Explanation: The current EhwSearch request
exceeded the maximum processing time specified in the
query parameter. The request was canceled, and no
valid result handle was returned.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_QUERY_SCOPE_TOO_COMPLEX

Explanation: The scope information you wanted to
add to a query for a cross index search using
EhwAddQueryScope is too long (see also explanation
of RC_QUERY_TOO_COMPLEX).

Programmer response: Shorten the scope
information and resubmit the EhwAddQueryScope call.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_QUERY_TOO_COMPLEX

Explanation: The specified query is too complex and
cannot be processed by Text Search Engine.

Programmer response: Adapt your application to
prevent over-complex queries, or to split complex
queries into a series of simpler ones.

Problem determination: There are no limits in the
Text Search Engine API to the number of operators or
the number of subqueries that can be used. When a
complex query is received, the Text Search Engine API
tries to divide it into several query blocks to be sent to
the Text Search Engine server. However, it can reach a
stage where this can no longer be done, and this return
code is returned.

This error return code is also returned when excessive
use of masking symbols or excessive use of the SYN
option expand the original query to a size that cannot
be managed by Text Search Engine.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_REQUEST_IN_PROGRESS

Explanation: A Text Search Engine API service was
called while another API request was active for the
same API session.

Programmer response: Issue an EhwEndSession call
and end the application, saving any information that can
help to find the cause of the error.

Problem determination: The Text Search Engine API
does not support concurrent access to the same API
session.

All applications running concurrently in the same
process should handle their own API sessions.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_RESULT_ALREADY_RANKED

Explanation: The result object has already been
assigned rank values. Ranking it twice is declined.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_RESULT_VIEW_EXISTS

Explanation: At least one result view may be created
from each result object. This return code indicates that
a second attempt has been made.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_SECTION_NAME_ALREADY_EXISTS

Explanation: EhwCreateDocumentModel encountered
a duplicate for a section name specified in the
datastream.

Programmer response: Ensure that naming rules are
followed by the application. These require:
v Uniqueness of model name in any document model

file
v Uniqueness of section name within any model

definition
v Uniqueness of section tag within any model definition

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_SECTION_TAG_ALREADY_EXISTS

Explanation: EhwCreateDocumentModel encountered
a duplicate for a section tag specified in the datastream.

Programmer response: Ensure that the naming rules
are followed by the application. For a list of these rules,
see RC_SECTION_NAME_ALREADY_EXISTS.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_SERVER_BUSY

Explanation: The Text Search Engine client cannot
currently establish a session with the requested Text
Search Engine server, or the Text Search Engine server
communication link was interrupted and cannot be
re-established.

Problem determination: The Text Search Engine
server had been started correctly but the maximum
number of parallel server processes was reached.
Unless this was a temporary problem, the
communication configuration on the Text Search Engine
server should be adapted.

204 Text Search: Programming the Text Search Engine

Programmer response: End the application and ask
the user to start it again to check if this was a
temporary problem.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_SERVER_CONNECTION_LOST

Explanation: The communication between client and
server was interrupted and cannot be re-established.

Problem determination: The Text Search Engine
server task may have been stopped by an administrator
or the server workstation may have been shut down.

Programmer response: Issue an EhwEndSession call
and end the application, saving any information that can
help to find the cause of the error. If you want to
continue processing for problem determination
purposes, first issue an EhwEndSession call, then an
EhwStartSession call to establish a new session with
the Text Search Engine server.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_SERVER_IN_ERROR

Explanation: An error occurred on the Text Search
Engine server workstation that cannot be recovered by
Text Search Engine API calls.

Programmer response: End the application, saving
any information that can help to find the cause of the
error.

Problem determination: You can continue to issue
any Text Search Engine API calls after the Text Search
Engine server system has been re-booted.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_SERVER_NOT_AVAILABLE

Explanation: The Text Search Engine API services
could not establish a session with the requested Text
Search Engine server.

Problem determination: Probably the Text Search
Engine server has not yet been started. If the Text
Search Engine server has been activated correctly and
the error persists, there is an installation problem.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_STOPWORD_IGNORED

Explanation: The specified query contained at least
one search term consisting only of stop words. The
search term was ignored when processing the query.

Programmer response: You can continue to issue

any API calls. You may want to inform the users of your
application that stop words should be avoided when
formulating Text Search Engine queries.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_STOPWORDLIST_NOT_ACCESSIBLE

Explanation: The stopword list file cannot be found in
the expected path. Stopword filtering is stopped. No
dcouments are processed.

Programmer response: Check whether the stopword
file corresponding to the specified language code or
codes exists in the resource path specified during client
installation or configuration, and whether it is readable.
This path is set to the subdirectory dict in the installation
directory of Text Search Engine.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_THESAURUS_PROBLEM

Explanation: In a call to EhwSearch requesting
Thesaurus expansion, the relation name specified was
unknown to the thesaurus used.

Programmer response: Ensure that the thesaurus
filename denotes a thesaurus for which the relation
name has been defined, or check the spelling of the
relation name.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_UNEXPECTED_ERROR

Explanation: An error occurred that could be caused
by an incorrect routine in Text Search Engine or by
incorrect installation of Text Search Engine.

Programmer response: End the application, saving
any information that can help to find the cause of the
error. If the error is not caused by an installation
problem, report it to your IBM representative.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_UNKNOWN_COMMUNICATION_TYPE

Explanation: Text Search Engine does not know the
communication type specified in the session information
parameter.

Programmer response: End the application, saving
any information that can help to find the cause of the
error.

Diagnosis information: There is no diagnosis
information returned with this return code.

Appendix A. The API return codes 205

RC_UNKNOWN_CONDITION

Explanation: The suspend condition specified in the
processing condition parameter is not supported by Text
Search Engine.

Programmer response: Adapt your application to
prevent the specification of unknown conditions. The
suspend conditions supported by Text Search Engine
are defined in file IMOAPIC.H provided with Text Search
Engine.

Diagnosis information: There is no diagnosis
information returned for this return code.

RC_UNKNOWN_DOCUMENT_MODEL_NAME

Explanation: For EhwSetIndexingRules: The default
for document model was not found in the model
definition file of the index that the command was issued
for.

For EhwGetDocumentModel and
EhwDeleteDocumentModel, the model name entered
was not a valid name in the document model file
accessed by the call.

Programmer response: Check the spelling of the
requested default name for the document model to
ensure that it corresponds to an entry in the document
model definition file of this index.

Note: If the index already contains documents, you must
not alter the content of the definition file.

RC_UNKNOWN_INDEX_NAME

Explanation: Text Search Engine does not know the
specified index name.

Programmer response: Check the index name
against the list returned by EhwListIndexes.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_UNKNOWN_INDEX_TYPE

Explanation: Text Search Engine does not know the
index type specified in the session information
parameter of EhwCreateIndex. The current request
cannot be processed.

Programmer response: Check the index type against
the list of types in imoapic.h.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_UNKNOWN_SECTION_NAME

Explanation: For EhwSearch: Either the input of a
name for a document model was not found in the model
definition file of the index, or none of the section names
is defined for that model.

Programmer response: Check the spelling of the
requested document model name and the section
names in the following list. Check the content of the
document model definition file to ensure that the
requested input is valid for that index.

Note: Do not alter the content of the definition file.

RC_UNKNOWN_SERVER_INFORMATION

Explanation: Text Search Engine does not know the
server identifier or the application identifier specified in
the session information parameter.

Programmer response: End the application, saving
any information that can help to find the cause of the
error.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_UNKNOWN_SERVER_NAME

Explanation: Text Search Engine does not know the
server name specified in the session information
parameter.

Programmer response: Check the server name
against the list returned by EhwListServers.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_UNKNOWN_SESSION_POINTER

Explanation: The session pointer specified in the
current service call is incorrect or obsolete.

Programmer response: End the application, saving
any information that can help to find the cause of the
error.

Problem determination: Note that a session pointer is
obsolete after an EhwEndSession call.

Diagnosis information: There is no diagnosis
information returned with this return code.

RC_WRITE_TO_DISK_ERROR

Explanation: A write error occurred that could be
caused by a full disk on the Text Search Engine server
workstation or by incorrect installation of Text Search
Engine.

Programmer response: Issue an EhwEndSession call
and end the application, saving any information that can
help to find the cause of the error.

Problem determination: Check with the administrator
that there is enough disk space available.

Diagnosis information: There is no diagnosis
information returned with this return code.

206 Text Search: Programming the Text Search Engine

Appendix B. Error codes returned by GetIndexingMsgs and
GetIndexFunctionStatus

Indexing messages occur when, for example:

v Documents cannot be indexed

v Documents are indexed, but a problem occurs

v A language dictionary cannot be found.

This appendix explains the reason codes returned by an EhwGetIndexingMsgs call
or by an EhwGetIndexFunctionStatus call. If you need more information on the
cause of the error, look in the log file imodiag.log in the server instance path. In
many cases, there will be an entry for the message code telling you which index file
caused a problem during update.

1 Out of storage. The server ran out of memory. Reduce the workload.

116
Datastream syntax error

280
The document has not been indexed. One of the index files could not be
opened.

281
The document has not been indexed. One of the index files could not be read.

441
The document has not been indexed. This message occurs for Ngram indexes
only. The document’s codepage is different from the one the index was created
with. This may happen for HTML and XML documents if the index was not
created in UTF8.

500
The document has not been indexed. The Library Services could not be loaded.
Check that the DLL is available and that the resource path is valid.

501
The document has not been indexed. Lib_Init in Library Services failed On Flat
File systems: DIT file not found or not on a valid directory, or DIT contents not
correct.

502
The document has not been indexed. An error has occurred while reading the
document content in library service LIB_read_doc_content.

503
The document has not been indexed. An error occurred in library service
LIB_access_doc.

504
The document has not been indexed. The library service LIB_doc_index_status
returned an error.

505
Close document failed. The library service LIB_close_doc returned an error.

506
End Library Services failed The library service LIB_end returned an error.

© Copyright IBM Corp. 1993, 2001 207

507
The library service call LIB_read_doc_content failed with an unexpected return
code.

508
The library service call LIB_close_doc returned a RC_TERMINATION error.

545
The document has not been indexed. One of the temporary index files could not
be opened.

546
The document has not been indexed. One of the temporary index files could not
be closed.

548
Internal error. Send the information in the diagnosis log to your IBM
representative.

549, 550
Out of storage (alloc failed). The server ran out of memory. Reduce the
workload.

551-564
The document has not been indexed. One of the index files could not be
opened, read, written to or closed. Check that there is enough space on the
disk used for the index and that access rights are correct.

565
Out of storage (alloc failed). The server ran out of memory. Reduce the
workload.

566-587
The document has not been indexed. One of the index files could not be
opened, read, written to or closed.

588-590
Internal error. Send the information in the diagnosis log to your IBM
representative.

591-604
The document has not been indexed. One of the index files could not be
opened, read, written to or closed.

605
Out of storage (alloc failed). The server ran out of memory. Reduce the
workload.

606-623
The document has not been indexed. One of the index files could not be
opened, read, written to or closed. Check that there is enough space on the
disk used for the index and that access rights are correct.

624
Out of storage (alloc failed). The server ran out of memory. Reduce the
workload.

625-631
The document has not been indexed. One of the index files could not be
opened, read, written to or closed. Check that there is enough space on the
disk used for the index and that access rights are correct.

208 Text Search: Programming the Text Search Engine

632
One of the temporary files created during indexing could not be opened with
write access. Check the access rights.

633
One of the temporary files created during indexing could not be closed.

634
One of the temporary files created during indexing could not be written. Check
that the index working directory has enough disk space.

635
One of the temporary files created during indexing could not be read.

636
One of the temporary files created during indexing could not be opened with
read access. Check the access rights.

659
One of the temporary files created during indexing could not be opened.

660
One of the temporary files created during indexing could not be written.

661
One of the temporary files created during indexing could not be closed.

662
One of the temporary files created during indexing could not be opened.

663
One of the temporary files created during indexing could not be written.

664
One of the temporary files created during indexing could not be closed.

665
One of the temporary files created during indexing could not be opened.

667
One of the temporary files created during indexing could not be written.

668-669
The document was not indexed. There was a matching problem with section
tags encountered in the document versus those defined in document models
file.

670-672
The document has not been indexed. One of the index files could not be
opened, read, written to or closed. Check that there is enough space on the
disk used for the index and that access rights are correct.

673
Out of storage (alloc failed). The server ran out of memory. Reduce the
workload.

674
Internal error, send the information in the diagnosis log to your IBM
representative.

675-687
The document has not been indexed. One of the index files could not be
opened, read, written to or closed. Check that there is enough space on the
disk used for the index and that access rights are correct.

Appendix B. Error codes returned by GetIndexingMsgs and GetIndexFunctionStatus 209

688, 690
Out of storage (alloc failed). The server ran out of memory. Reduce the
workload. Try smaller values in the configuration file.

689
Internal error. Send the information in the diagnosis log to your IBM
representative.

691-695
The document has not been indexed. One of the index files could not be
opened, read, written to or closed. Check that there is enough space on the
disk used for the index and that access rights are correct.

696-707
Internal error, send the information in the diagnosis log to your IBM
representative.

708
Out of storage (alloc failed). The server ran out of memory. Reduce the
workload. Try smaller values in configuration file.

709-718
The document has not been indexed. One of the index files could not be
opened, read, written to or closed. Check that there is enough space on the
disk used for the index and that access rights are correct.

719-721
Internal error, send the information in the diagnosis log to your IBM
representative.

722, 729
Out of storage (alloc failed). The server ran out of memory. Reduce the
workload. Try smaller values in configuration file. For more information see Text
Search Engine: Customization and Administration, SH12-6365.

730, 732, 733, 735-738
The document has not been indexed. One of the index files could not be
opened, read, written to or closed. Check that there is enough space on the
disk for the index and that access rights are correct.

731, 739-742, 744-746, 749, 755-758, 760-761, 767
Internal error, send the information in the diagnosis log to your IBM
representative.

743, 748, 750-754, 759, 765-766, 768-770
The document has not been indexed. One of the index files could not be
opened, read, written to or closed. Check that there is enough space on the
disk used for the index and that access rights are correct.

747, 763, 764
Out of storage (alloc failed). The server ran out of memory. Reduce the
workload. Try smaller values in configuration file.

815

There are two possible causes:

v One of the resource files needed to support the language used for the
document causing the failure was not found

v The language requested by that document is not supported by Text Search
Engine

210 Text Search: Programming the Text Search Engine

831
The document has not been indexed. No text has been found. The document
length is 0 bytes.

860
File open error. Either some dictionaries or the thesaurus files could not be
found. Check your resource path for the dictionary files. The resource path is
defined in the server configuration file imosrv.ini and in the client configuration
file imocl.ini. If you have specified path information for your thesaurus files
during search, check the location and file name.

861
The document has not been indexed. Tokenization of its text found no valid
tokens. Check the document’s content for validity with respect to supported
languages and contained words. This error can be caused by a document
containing only stopwords.

954-956
Internal error. Send the information in the diagnosis log to your IBM
representative.

957-967
The document has not been indexed. One of the index files could not be
opened, read, written to or closed. Check that there is enough space on the
disk used for the index and that access rights are correct.

1000
An error occurred during file open. Check access rights.

1001
An error occurred during file append. Check access rights.

1002
An error occurred during file read. Maybe the file is corrupted.

1003
An error occurred during file write. Check disk space and access rights.

1005
An error occurred during file read (positioning within file). Maybe the file is
corrupted.

1006
An error occurred during rename of temporary file. Check the access rights.

1007
An error occurred during file create. Check access rights.

1008
An error occurred during file compression. Check the access rights.

1009
An error occurred during file close. Maybe the file is corrupted.

1010
The specified index name is already in use. Use another index name.

1011
The specified path is already in use. Use another location.

1012
The same path is used for data and working directory. Use another location.

Appendix B. Error codes returned by GetIndexingMsgs and GetIndexFunctionStatus 211

1013
The specified index name is invalid. Index names must be uppercase or digits
and not longer than 8 characters.

1014
An error occurred during file copy. Check access rights and disk space.

1017
The index name is unknown. Check correct spelling.

1019
An error occurred during file deletion. Check access rights. This error message
can occur as a ″secondary error″ - look up the diagnosis file to see if a
preceding error entry gives more information.

1020
General file error. Check access rights.

1070-1074
The document has not been indexed. The codepage specified is either invalid
generally, or is invalid for the index being accessed.

1085
The document has not been indexed. An error occurred when reading the index
queue.

1086
The document has not been indexed. The index queue is empty.

1116-1117
The document has not been indexed. Information from the server instance
initialization file could not be processed. Make sure entries in the initialization
file are valid, and that the file is accessible to the application.

1129
No document has been indexed. Starting the background processing failed.

1158
An error occurred while renaming a file. Check access rights and disk space.

1162
The index files of an Ngram index may be corrupted.

1163, 1164
The document has not been indexed due to an unexpected error.

1165
The document has not been indexed due to an unexpected end-of-file condition.

1176
No more documents can be indexed for Ngram index. There is an overflow
condition for document numbers (overflow of long). If there were many deletions
or repeated updates of the same document, try a call to EhwReorg to solve the
problem. If not, consider using a second index for new documents.

1177
The document has not been indexed. It was considered too big by the Ngram
indexer.

1189
The document has not been indexed. There was a problem with boundary
sequence (Korean-language specific).

212 Text Search: Programming the Text Search Engine

1198-1200
The document has not been indexed. There was a problem with index access.
The index may be corrupted.

1201
The document has not been indexed. The document codepage could not be
converted to the index-specific codepage. This error is for Ngram indexes in
UTF8 codepage only.

1202
The document has not been indexed. The document codepage could not be
converted to the index-specific codepage due to invalid data in the document.
This error is for Ngram indexes in UTF8 codepage only.

1500-1505
The document-analysis component has problems. It could either not be
initialized (check LIBPATH and content of configuration file) or failed due to
internal problems. See the diagnosis file for more information.

1904
The document has not been indexed. There is a problem with accessing the
document model for a section-enabled index. Check access rights and for the
existence of the file.

2000
The document has not been indexed. The document type is not supported.
Library service Lib_access_doc returned an invalid document type.

2001
The document has not been indexed. An incorrect sequence of fields has been
detected in the document’s data stream.

2002
The document has not been indexed. An incorrectly structured field has been
detected in the document’s data stream.

2003
The document has not been indexed. Only one text section is allowed for a
document in Text Search Engine text format.

2005
The document has not been indexed. A language specified in the document’s
data stream is not supported.

2006
The document has not been indexed. A CCSID specified in the document’s data
stream is not supported.

2007
The expected document format given by the library or by the default rule is not
correct. The document header is incorrect for the format. Check if the default
rule is a document with a special document header, and change if the rule is
not correct.

2008
The document was not indexed because it could not be accessed.

2009
The document was not indexed because it was in use and could not be
accessed.

2010
The document has not been indexed. The specified CCSID is not correct.

Appendix B. Error codes returned by GetIndexingMsgs and GetIndexFunctionStatus 213

2011
The document has not been indexed because it is not a valid IBM DCA RFT or
FFT document. End-of-page must be the last control in the body text of the
document.

2012
The document has not been indexed because it is not a valid IBM DCA RFT or
FFT document. A structured field contains an incorrect length specification.

2013
The document has not been indexed because it is not a valid IBM DCA RFT or
FFT document. An incorrect control has been detected in the document.

2014
The document has not been indexed because it is not a valid IBM DCA RFT or
FFT document. An incorrect multi-byte control or structured field has been
detected in the document.

2015
The document has not been indexed because it is not a valid IBM DCA RFT or
FFT document. Duplicate document parameters have been found.

2016
The document has not been indexed because it is not a valid IBM DCA RFT or
FFT document. An empty text unit has been found.

2018
Either the document is in a format that is not supported, or there is an “exclude”
entry in the DIT for the document’s extension. Check that the document has a
extension that allows it to be indexed.

2020
The document has not been indexed. It is neither a WordPerfect document nor
a WordPerfect file.

2021
The document has not been indexed. It is a WordPerfect file but not a
WordPerfect document.

2022
The document has not been indexed. This version of WordPerfect is not
supported.

2023
The document has not been indexed. It is an encrypted WordPerfect file. Store
the document without encryption.

2026
An END_TXT occurred in a footnote or an endnote. Check the WordPerfect file,
it may be damaged.

2028
The parser returned non document text. Check the file content, especially with
respect to format-specific words. Check whether the document format is
supported. If automatic format recognition fils, ensure that the correct parser is
called (see “EhwSetIndexingRules” on page 144).

2030
The document has not been indexed. Either it is not a Microsoft Word file or it
is a version of Word that is not supported.

214 Text Search: Programming the Text Search Engine

2031
The document has not been indexed. Unexpected end-of-file has been detected
in a Microsoft Word document.

2032
The document has not been indexed. An incorrect control has been detected in
a Microsoft Word document.

2033
The document has not been indexed. It was saved in complex format with the
fastsave option. Save it with the fastsave option off.

2034
The document has not been indexed. A required field-end mark is missing in a
Microsoft Word document.

2035
The document is encrypted. Store the document in Microsoft Word without
encryption.

2036
This is a Word for Macintosh document; it cannot be processed. Store the
document in Word for Windows format.

2037
This Word document contains embedded OLE objects.

2040
The document has not been indexed because it is not a valid ECTF file.

2041
The document has not been indexed. It contains an .SO LEN control that is not
followed by a number.

2042
The document has not been indexed. It contains an .SO LEN control that is
followed by an incorrect number. The number must be between 1 and 79.

2043
The document has not been indexed. Only one .SO DOC control is allowed.
Save each ECTF document in a separate file.

2044
The document has not been indexed. An .SO HDE control must be followed by
begin and end tags.

2046
The document has not been indexed. The document contains text before the
.SO DOC control.

2047
The document has not been indexed. The document contains text before an
.SO PID control.

2048
The document has not been indexed. An end tag is missing after a begin tag.

2050
The document has not been indexed. Incorrect tags have been detected
following an .SO HDE control.

2051
The document has not been indexed. End-of-line has been detected after an
.SO control.

Appendix B. Error codes returned by GetIndexingMsgs and GetIndexFunctionStatus 215

2052
The document has not been indexed. Unexpected end-of-text has been
detected.

2060
The document has not been indexed. Either it is not an AmiPro document or it
is a version of AmiPro that is not supported.

2061
The document has not been indexed. The length of a control in an AmiPro
document is too long.

2062
The document has not been indexed. This version of AmiPro is not supported.
Only AmiPro Architecture Version 4 is supported.

2063
AmiPro Style Sheets have not been indexed.

2064
The document has not been indexed. An incorrect character set has been
detected. Only Lotus Character Set 82 (Windows ANSI) is supported.

2065
The document has not been indexed. Unexpected end-of-file has been detected
in an AmiPro document.

2072
The document cannot be scanned because it is encrypted.

2073
The document format is inconsistent.

2074
The document has the “bad file” flag bit set.

2080
The document has not been indexed. Either it is not an RTF document or it is a
version of RTF that is not supported.

2081
The document has not been indexed. An RTF control word has been detected
that is too long.

2083
The document has not been indexed. Macintosh code page is not supported.

2084
The document has not been indexed. It is an RTF document, but this RTF
version is not supported. Only RTF Version 1 is supported.

2090
The document has not been indexed. It is an HTML document, which contains
a tag considered too long by the parser.

2093
The document has not been indexed. It is an XML document, which was
rejected by the XML parser.

2100
The document is damaged or unreadable for some other reason. A new
common parser could correct the problem.

216 Text Search: Programming the Text Search Engine

2101
The document cannot be indexed because it is empty or it contains no text.
Check whether the document contains only graphics.

2102
The document cannot be indexed because it is either password-protected or
encrypted.

2105
The document type is known, but the filter is not available.

2106
The document cannot be indexed because it is empty.

2107
The document cannot be indexed because it cannot be opened. Check
document access.

2112
The document cannot be indexed because it is an executable file.

2113
The document cannot be indexed because it is compressed.

2114
The document cannot be indexed because it is a graphic. If the graphic
document format returns an acceptable piece of text, then request to include
this document format in the indexing process.

2120
The output file of the user exit does not exist or is not accessible. A new
common parser version could correct the problem.

2121
The output file cannot be opened for read or it is empty. A new common parser
version could correct the problem.

2122
Attempting to use a user-exit output file, but no file name has been given or set
in the object.

2130
The user exit program could not be run. Check if the executable can be found
in the path set by the PATH environment variable. Create a trace and dump to
get additional information about the environment (errno) return codes.

2131
The user exit program failed with a bad return code. Create a trace and dump
to get additional information about the environment (errno) return codes.

Appendix B. Error codes returned by GetIndexingMsgs and GetIndexFunctionStatus 217

218 Text Search: Programming the Text Search Engine

Appendix C. Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Deutschland
Informationssysteme GmbH
Department 3982
Pascalstrasse 100
70569 Stuttgart
Germany

© Copyright IBM Corp. 1993, 2001 219

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement or
any equivalent agreement between us.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Programming interface information
This book is intended to help the application programmer to use the IBM Text
Search Engine programming interfaces. This book documents general-use
programming interface and associated guidance information for Text Search Engine.

General-use programming interfaces allow the customer to write programs that
obtain the services of Text Search Engine and/or programs that provide specific
library services to Text Search Engine.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States, or
other countries, or both:

AIX
IBM
Intelligent Miner
MVS
z/OS

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

220 Text Search: Programming the Text Search Engine

Index

A
analysis of text

for indexing 6
API

error handling 191
functions 21
overview 1
return codes, by type 192, 194
what it provides 33

API functions
EhwAddQueryScope 38
EhwCancelContinuation 41
EhwClearIndex 43
EhwClearScheduledDocuments 45
EhwCloseDocument 47
EhwCloseIndex 48
EhwCreateDocumentModel 49
EhwCreateIndex 52
EhwCreateIndexGroup 58
EhwCreateResultView 60
EhwDeleteDocumentModel 62
EhwDeleteIndex 64
EhwDeleteIndexGroup 66
EhwDeleteResult 67
EhwDeleteResultView 69
EhwDelIndexingMsgs 70
EhwEndSession 71
EhwGetDocumentModel 72
EhwGetIndexFunctionStatus 75
EhwGetIndexInfo 78
EhwGetIndexingMsgs 81
EhwGetIndexingRules 84
EhwGetIndexStatus 87
EhwGetMatches 90
EhwGetProblemInfo 94
EhwGetResultView 96
EhwListDocumentModels 99
EhwListIndexes 102
EhwListResult 104
EhwListServers 107
EhwOpenDocument 110
EhwOpenIndex 113
EhwRank 115
EhwReorgIndex 118
EhwResumeIndex 120
EhwScheduleDocument 122
EhwSearch 125
EhwSelectResultView 139
EhwSetIndexFunctionStatus 142
EhwSetIndexingRules 144
EhwSort 147
EhwStartSession 150
EhwSuspendIndex 154
EhwUpdateIndex 156
how to call 37

application
linking 34

application (continued)
set up 34

attribute list 160

B
base form, reducing terms to 7
basic text analysis 6

for indexing terms 6
normalization 6
sentence recognition 7
terms with nonalphanumeric characters 6

big-endian format 3

C
calling the API functions 37
CCSID 4, 188
character data

passing 3
types of 4

character masking 9
closing an index 23
compound terms, splitting 7
connecting Text Search Engine to a library 159
creating an index 22
cross-index search

overview 26
problem information 29
scope of 27

D
data exchange conventions 1
data stream

basics 2
data passed 2
format 2
identifier 2
input 35
items 2
length 2
numeric fields 35
output 35
parameters 2
type 2

decomposition of compound terms 7
dehyphenation 188
deleting a result 28
deleting an index 22
diagnosis information 160, 185, 191
document access 1, 160
document formats 1
document identifiers 4
document index status 160
document management system 159
document text 4

© Copyright IBM Corp. 1993, 2001 221

E
EhwAddQueryScope

example 39
format 38
overview 27
parameters 38
purpose 38
results 38
usage 39

EhwCancelContinuation
examples 41
parameters 41
purpose 41
results 41
usage 41
with GetResultView 31
with ListIndexes 22

EhwClearIndex
examples 43
overview 24
parameters 43
purpose 43
results 43
usage 43

EhwClearScheduledDocuments
examples 45
overview 24
parameters 45
purpose 45
results 45
usage 45

EhwCloseDocument
examples 47
parameters 47
purpose 47
result 47
usage 47

EhwCloseIndex
examples 48
overview 23
parameters 48
purpose 48
results 48
usage 48

EhwCreateDocumentModel
examples 51
format 50
parameters 49
purpose 49
results 49
usage 51

EhwCreateIndex
examples 56
format 53
overview 22
parameters 52
purpose 52
results 52
usage 56

EhwCreateIndexGroup
examples 59

EhwCreateIndexGroup (continued)
format 59
overview 26
parameters 58
purpose 58
results 58
usage 59

EhwCreateResultView
examples 60
overview 29
parameters 60
purpose 60
results 60
usage 60

EhwDeleteDocumentModel
examples 63
format 62
parameters 62
purpose 62
results 62
usage 63

EhwDeleteIndex
examples 65
format 64
overview 22
parameters 64
purpose 64
results 64
usage 65

EhwDeleteIndexGroup
examples 66
overview 26
parameters 66
purpose 66
results 66

EhwDeleteResult
examples 68
overview 28
parameters 67
purpose 67
results 67
usage 67

EhwDeleteResultView
examples 69
parameters 69
purpose 69
results 69

EhwDelIndexingMsgs
examples 70
parameters 70
purpose 70
results 70
usage 70

EhwEndSession
examples 71
overview 21
parameters 71
purpose 71
results 71
usage 71

222 Text Search: Programming the Text Search Engine

EhwGetDocumentModel
examples 74
format 72, 73
parameters 72
purpose 72
results 72
usage 74

EhwGetIndexFunctionStatus
examples 77
format 76
overview 26
parameters 75
purpose 75
results 75
usage 76

EhwGetIndexInfo
examples 80
format 78
overview 23
parameters 78
purpose 78
results 78
usage 80

EhwGetIndexingMsgs
error codes 207
examples 82
format 81
parameters 81
purpose 81
results 81
usage 82

EhwGetIndexingRules
examples 86
format 84
overview 23
parameters 84
purpose 84
results 84
usage 85

EhwGetIndexStatus
examples 88
format 87
overview 25
parameters 87
purpose 87
results 87
usage 88

EhwGetMatches
examples 93
format 90
overview 28
parameters 90
purpose 90
results 90
usage 92

EhwGetProblemInfo
examples 95
format 94
overview 29
parameters 94
purpose 94

EhwGetProblemInfo (continued)
result 94
usage 95

EhwGetResultView
examples 98
format 96
overview 31
parameters 96
purpose 96
results 96
usage 97

EhwListDocumentModels
examples 100
format 100
parameters 99
purpose 99
results 99
usage 100

EhwListIndexes
examples 103
format 102
overview 22
parameters 102
purpose 102
results 102
usage 103

EhwListResult
examples 105
format 104
parameters 104
purpose 104
results 104
usage 105

EhwListServers
examples 108
format 107
overview 21
purpose 107
results 107
usage 108

EhwOpenDocument
examples 111
format 111
parameters 110
purpose 110
results 110
usage 111

EhwOpenIndex
examples 114
format 114
overview 23
parameters 113
purpose 113
results 113
usage 114

EhwRank
examples 116
overview 29
parameters 115
purpose 115
results 115

Index 223

EhwRank (continued)
usage 115

EhwReorgIndex
examples 119
overview 25
parameters 118
purpose 118
results 118
usage 118

EhwResumeIndex
examples 121
format 121
overview 23
parameters 120
purpose 120
results 120
usage 121

EhwScheduleDocument
examples 123
format 123
overview 24
parameters 122
purpose 122
results 122
usage 123

EhwSearch
examples 137
format 126
overview 26
parameters 125
purpose 125
results 125

EhwSelectResultView
examples 140
format 140
overview 30
parameters 139
purpose 139
results 139
usage 140

EhwSetIndexFunctionStatus
examples 143
overview 26
parameters 142
purpose 142
results 142

EhwSetIndexingRules
examples 146
format 145
overview 23
parameters 144
purpose 144
results 144
usage 146

EhwSort
examples 148
format 147
parameters 147
purpose 147
results 147
usage 148

EhwStartSession
examples 152
format 150
overview 21
parameters 150
purpose 150
results 150
usage 152

EhwSuspendIndex
examples 155
format 155
overview 23
parameters 154
purpose 154
results 154
usage 155

EhwUpdateIndex
examples 157
overview 24
parameters 156
purpose 156
results 156
usage 156

end Text Search Engine session 21
environment overview 33
error codes from EhwGetIndexMsgs 207
error handling, in API 191
error handling, library services 185
external names 4

F
format

big-endian 3
little-endian 3

function prototypes 34
function status of an index 26

H
highlighting information 28

I
ID() 35
images, links to 184
IMOAPIC.H 34, 35, 191
IMOLANG.H 92
IMOLSCFS 161
IMOLSDEF.H 92, 189
IMOLSPRO.H 163
IMOLSSFS 161
index

closing 23
creating 22
cross-index search 26
deleting 22
function status 26
getting index information 23
groups 26
list of 22

224 Text Search: Programming the Text Search Engine

index (continued)
opening 23
reorganizing 25
resuming 23
rules 23
setting up 21
status information 25
suspending 23
updating 24

indexing, linguistic processing for 5
input data streams 35
interfaces

API functions 37
library service functions 159
overview 1

ISO 8859-1 4

L
language of text documents

supported languages 9
LIB_access_doc 164
LIB_close_doc 166
LIB_end 169
LIB_get_doc_attr_values 170
LIB_get_doc_group_attr_values 173
LIB_init 176
LIB_list_doc_groups 178
LIB_list_documents 181
LIB_read_doc_content 184
library

connecting Text Search Engine to 159
system 1, 159

library services
attribute list function 160
document access function 160
document index status function 160
functions 160
interfaces 1
logical relationships 163
overview 159
session control function 160
specifications 163

linguistic processing
basic text analysis 6
character and word masking 9
description 5
for indexing 5
for retrieval 8
masking of characters and words 9
reducing terms to base form 7
sound expansion 9
splitting compound terms 7
stop-word filtering 7
supported languages 9
synonyms 8
thesaurus expansion 10

link library 34
linking your application 34
listing indexes 22
listing Text Search Engine servers 21

little-endian format 3

M
masking of characters and words 9
matches, getting highlight information 28
multilingual documents 1

N
natural-language text 1
normalization of terms 6
Notices 219
numerical values, passing 3

O
opening an index 23
output data streams 35

P
parameters, data stream 2
performance, improving 25
problem information for a cross-index search 29
programming hints 35

R
ranking a result view 29
recognizing sentences 7
reducing terms to base form 7
reorganizing an index 25
result

content 31
deleting 28
ranking 29
sorting 30
view, working with 29

resuming an index 23
retrieval, linguistic processing for 8
return codes

from the API 191
listed by type 192, 194
types 191

return codes (library services)
concept 185
internal program error 192
no error 191
other errors 192
resource constraints 192
user error 191

rules for indexing 23

S
SAA Coded Character Set Identifier (CCSID) 188
scheduling documents 24
scope of a cross-index search 27
search argument 132

Index 225

search functions 26
search result

content 31
deleting 28
ranking 29
sorting 30
working with views 29

search terms 4
searching multiple indexes 26
sections

creating an index enabled for section support 31
enabling recognition for an index 55
in index characteristic from EhwGetIndexInfo 79
specifying in EhwGetMatches 91
specifying in EhwSearch 131
specifying in the Text Search Engine text

format 188
sentence recognition 7
session, starting and stopping 21
session control 160
setting up the library connection 160
setting up your application 34
sorting a result view 30
sound expansion 9
specifications for library services 163
starting a Text Search Engine session 21
stop-word filtering 7
storage considerations 35
suspending an index 23
symbolic name definitions 34
synonyms 8
system overview 33

T
term normalization 6
text analysis 6
text criterion 129
text format 187
Text Search Engine

index 161
names 4
text format 1, 187

thesaurus expansion 10
types of API return codes 191

U
updating an index 24

V
VAL2() 35

W
word masking 9
WordPerfect 1

226 Text Search: Programming the Text Search Engine

Readers’ Comments — We’d Like to Hear from You

z/OS
Text Search:
Programming the Text Search Engine
Version 1.2

Publication No. SH12-6717-01

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SH12-6717-01

SH12-6717-01

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Deutschland Entwicklung GmbH
Information Development, Dept. 0446
Schoenaicher Str. 220
71032 Boeblingen
Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5694-A01

SH12-6717-01

	Contents
	About this book
	Who should read this book
	The Text Search Library

	Chapter 1. Before you start
	Overview of the interfaces
	The Text Search Engine application programming interface
	The Text Search Engine library service interfaces
	The Text Search Engine text format

	Data exchange conventions
	Basics about the data streams
	Passing numerical values
	Passing character data

	Chapter 2. Linguistic processing
	Linguistic processing for indexing
	Basic text analysis
	Recognizing terms that contain nonalphanumeric characters
	Normalizing terms to a standard form
	Recognizing sentences

	Reducing terms to their base form
	Stop-word filtering
	Decomposition (splitting compound terms)

	Linguistic processing for retrieval
	Synonyms
	Thesaurus expansion
	Sound expansion
	Character and word masking

	The supported languages
	Thesaurus concepts
	Terms
	Relations
	Text Search Engine thesaurus relations

	Ngram thesaurus relations
	Associative
	Synonymous

	Creating a Text Search Engine thesaurus
	Creating an Ngram thesaurus

	Chapter 3. Using the API functions
	Listing the servers and starting a session
	Creating and setting up an index
	Creating and deleting an index
	Getting the names of the existing indexes
	Suspending and resuming an index
	Opening an index
	Getting index information
	Setting and getting the default indexing rules

	Working with an index
	Scheduling and indexing documents
	Getting the index status
	Improving performance and the use of storage
	Setting and getting the index function status

	Searching for documents
	The search functions
	Specifying the scope of a cross-index search

	Working with the result of a search
	Finding matches in search results
	Getting problem information for a cross-index search

	Working with result views
	Creating and ranking a result view
	Selecting from and sorting a result view
	Getting the contents of a result view

	Working with structured documents

	Chapter 4. Setting up your application
	What the API provides
	Environment and system overview

	Setting up your application
	Defining symbolic names
	Linking your application
	For Windows NT systems
	For UNIX systems
	For z/OS systems

	Some programming hints

	Chapter 5. Calling the API functions
	EhwAddQueryScope
	EhwCancelContinuation
	EhwClearIndex
	EhwClearScheduledDocuments
	EhwCloseDocument
	EhwCloseIndex
	EhwCreateDocumentModel
	EhwCreateIndex
	EhwCreateIndexGroup
	EhwCreateResultView
	EhwDeleteDocumentModel
	EhwDeleteIndex
	EhwDeleteIndexGroup
	EhwDeleteResult
	EhwDeleteResultView
	EhwDelIndexingMsgs
	EhwEndSession
	EhwGetDocumentModel
	EhwGetIndexFunctionStatus
	EhwGetIndexInfo
	EhwGetIndexingMsgs
	EhwGetIndexingRules
	EhwGetIndexStatus
	EhwGetMatches
	EhwGetProblemInfo
	EhwGetResultView
	EhwListDocumentModels
	EhwListIndexes
	EhwListResult
	EhwListServers
	EhwOpenDocument
	EhwOpenIndex
	EhwRank
	EhwReorgIndex
	EhwResumeIndex
	EhwScheduleDocument
	EhwSearch
	EhwSelectResultView
	EhwSetIndexFunctionStatus
	EhwSetIndexingRules
	EhwSort
	EhwStartSession
	EhwSuspendIndex
	EhwUpdateIndex

	Chapter 6. Connecting Text Search Engine to a library
	What library services provide
	Functions
	Setting up the library connection

	Chapter 7. Specifications for library services
	LIB_access_doc
	LIB_close_doc
	LIB_doc_index_status
	LIB_end
	LIB_get_doc_attr_values
	LIB_get_doc_group_attr_values
	LIB_init
	LIB_list_doc_groups
	LIB_list_documents
	LIB_read_doc_content
	Error handling concept and return codes

	Chapter 8. Using the Text Search Engine text format
	Data stream syntax

	Appendix A. The API return codes
	API error handling
	Types of return codes

	Appendix B. Error codes returned by GetIndexingMsgs and GetIndexFunctionStatus
	Appendix C. Notices
	Programming interface information
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

